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Introduction

C ausal factors do not act uniformly under all circumstanc-
es, a phenomenon that is known as heterogeneity of ef-

use these terms interchangeably. The following two examples 
show heterogeneity of effect.  

Example 1:  The antibiotic tetracycline could discolor teeth.1 How-
ever, this effect depends on age.  Tooth discoloration mainly happens 
in children under the age of eight.1 In this case, we say that the effect 

Example 2:  Abacavir, a drug used to treat HIV-infected patients, 
may cause a severe hypersensitivity that could even be fatal.2  
However, Abacavir (the exposure) causes hypersensitivity (the 
outcome) almost exclusively in those who have a certain allele, 
HLA-B*5701.2 -

-
posure on an outcome “depends” on a third factor.  If one asks 
the question: “Does tetracycline discolor teeth?”  The answer is “it 
depends on age”.  Likewise, if one asks whether Abacavir causes 
hypersensitivity, the answer is “it depends on whether the person 
carries the allele HLA-B*5701”.

discuss the following topics: 

4. Reasons for observing statistical interactions;
5. Statistical versus biologic interactions;
6. Special forms of interactions (gene-gene and gene-environ-

ment interactions);
7. Sample size required to detect statistical interactions;

9. Types of departure from additive and multiplicative models;

12. Factorial designs and interactions;

15. Interactions and adjustment. 

If the effect of an exposure (E) on an outcome (O) depends on a 

discoloration depended on age.  
Two important points needs to be emphasized here.  First, the 

-
ciation, which may or may not be causal (see Section 4).  Second, 

of statistical association (e.g., relative risk, odds ratio, or attribut-
able risk) is used (see Sections 8 and 9).

-

Figure 1.

Qualitative
-
-
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ample 1, tetracycline increases the risk of tooth discoloration in 
younger individuals (relative risk > 1) but does not have an effect 
in older ages (relative risk = 1). Also, if the exposure increases the 
risk of the health outcome in some situations (relative risk > 1) 
and decreases the risk in other situations (relative risk < 1), that is 

Quantitative -
tion of the association doesn’t change but the strength (quantity 

Example 3. 
Example 3:  The results of a cohort study in Iran showed that after 

adjustment for several factors, opium increased total mortality risk 
by 86% (relative risk = 1.86).3 

results by sex, this association was stronger for women (relative 
risk = 2.43) than for men (relative risk = 1.63); p-value < 0.001.  
In this example, opium increases the risk of death in both men and 
women so there is no qualitative difference.  However, the effect 
of opium on death (in terms of relative risk) is stronger in women 

-

Please note that the difference across strata should be statistically 
-

wise differences in effect estimates may be considered to be due 
to chance. 

Example 4:  In the study of opium and mortality,3 when results 
-

tive risk of death associated with opium use in Turkmen and non-
Turkmen ethnic groups were 1.82 and 1.99, respectively.  How-
ever, p-value for interaction was 0.58, which was not statistically 

or regression methods.

-

tabulated or are represented graphically using forest plots. Figure 2 

by gender, ethnicity, residential place, and cigarette smoking.  

3.2 Regression
Regression models estimate the magnitude and statistical sig-

models.   Interaction terms are often constructed using product 

on the algebra of interactions terms are provided in Box 1, Box 3, 
and Section 10.

-
ods. Therefore, they tell us about “statistical interactions”.  As 
mentioned in Section 1 and detailed in the next two sections, these 
interactions are a form of association and may or may not be causal. 

4. Reasons for observing statistical interactions
Statistical interactions may arise due to a number of reasons in-

-
-

tensity of exposure, competing risk factors, and biologic reasons.4 

The term “differential” here refers to a difference across strata of 

Interactions due to random variation are very commonly seen in 
-

type I error.  Therefore, statisticians warn against immediate inter-

Figure 2.
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other studies, often the results of subgroup analyses are not taken 
seriously.  

-
tions.  This happens when the association between the exposure 
and the outcome is confounded in one subgroup but not in the 
other.  For example, assume that in the 1950s men drank coffee 
at work when they smoked, whereas women drank their coffee at 
home and did not smoke.  In such a circumstance, drinking coffee 
could be associated with lung cancer in men but not in women.  

real biologic reason. 
Different forms of bias that are limited to one study subgroup 

-
ample, assume that women respond truthfully to questions about a 
certain exposure while men do not.  This may result in seeing an 
association in one sex but not the other. 

Likewise, differential measurement error may result in associa-
tion in one subgroup but not the other.  For example, assume that 
women can accurately report their intake of fruits and vegetables 
but men report their intake with substantial random error.  If in 
reality intake of fruits and vegetables is associated with a 50% re-
duction in risk of lung cancer, that reduction will be detectable in 
women but not in men. 

interactions.  For example, if men smoke more heavily than wom-
en and the results are not accurately adjusted for intensity of smok-

with lung cancer risk in men than in women.

passive smoking is a risk factor for lung cancer in never smokers 
but not in heavy smokers.  The reason is that the large majority of 
lung cancers in heavy smokers are caused by their active smoking 
and in these individuals perhaps very little risk is added by a weak 
risk factor such as passive smoking.  However, in never-smokers 
the effect of passive smoking may be more evident.  Many such 
examples are found in epidemiology.  A study of radon exposure 
and lung cancer found that radon is a stronger risk factor (in terms 
of relative risk) in never-smokers than in smokers.5 Likewise, 
compared to low-risk areas of the world for esophageal squamous 
cell carcinoma, in high-risk areas tobacco smoking is a much less 
strong risk factor for this cancer.6,7 The reason may be the presence 
of a very strong risk factor for esophageal squamous cell carci-
noma that competes with smoking for causing this cancer.8  Jerome 

-

gistic regression and found that odds ratios could be used as an 
approximation to relative risks in many case-control studies,9 was 

risk factors in causing interactions.10

Finally, and perhaps of most interest, biologic interactions could 
-

amples have been provided before or later in this paper, includ-
ing the interaction between tetracycline and age in causing tooth 
discoloration,1Abacavir and HLA type in causing hypersensitivity 
reactions,2 cheese intake and monoamine oxidases in causing hy-
pertensive crisis,11,12 and ADH2 and ALDH2 polymorphisms and 
alcohol intake in causing hypersensitivity to alcohol.13,14

5. Statistical interactions versus biologic interactions
The term “interaction” may not mean exactly the same thing to 

statisticians and biologists.  As we will detail in Sections 8 to 10, 
statisticians consider interaction as departure from a model, such 
as from a linear (additive) or log-linear (multiplicative) model.15 

Statistical interaction is in fact a form of association and, as dis-
cussed in Section 4, may or may not have any causal implication.  
To biologists, however, interactions may mean that the causal ef-
fect of one variable is different in the presence of another one.  For 
example, one protein may need another protein to accomplish a 
function.  In the presence of the other one, the protein functions, 
and in the absence of the other one, it does not.  Also, drug-drug 
interactions and food-drug interaction may be biologically detect-
able.  For example, people who take monoamine oxidases (a class 
of antidepressants) should avoid or limit foods containing tyra-
mine (such as aged cheese) to avoid risk of hypertensive crisis.11,12 

Neither eating usual quantities of cheese (e.g., 100 grams over one 
hour) nor taking monoamine oxidases alone causes hypertensive 
crisis, but when taken together they do cause such reactions.16

When epidemiologic studies show evidence for statistical in-

biologic interaction.  Here, we will describe why this assump-
tion may be incorrect.  First, as mentioned in Section 4, there are 

Second, as mentioned later (in Sections 8 and 9), statistical inter-
action depends on the scale of measurement.  When there is no 
multiplicative interaction, there is additive interaction and vice 
versa.  Therefore, there is always some form of interaction; it just 
depends on the scale one chooses.  Rothman, Greenland, and Lash 

to verify – departures from additivity imply biologic interaction.  
If so, most epidemiologic results that report no interaction may 
indeed be implying biologic interaction.  This is because most of 

Box 1.

 
 
  
 
 1, and X2.   The model is shown here:  E(Y) = b0 + b1 X1 + b2 X2 + b3 X1 X2.  In this model E(Y) is average
 of Y, b0 is the intercept, b1 X1 is the main effect of X1, b2 X2 is the main effect of X2, and b3 X1 X2 is the interaction term.   Below, we show how this interaction
 term affects the results.
 2 = 0).  In this situation, in the absence of exposure (X1 = 0), E(Y) will be b0.  In the presence of
  the exposure (X1 = 1), E(Y) will be b0 + b1.  Therefore, the presence of exposure changes E(Y), which is the average Y, by b1.
 2 = 1).  In this situation, in the absence of exposure (X1 = 0), E(Y) will be b0 + b2.  In the
  presence of the exposure (X1 = 1), E(Y) will be b0 + b1 + b2 + b3.  Therefore, the presence of exposure changes E(Y), which is the average Y, by b1 +b3.
 1
 Y by b1 + b3 3
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the models that we use in epidemiology (e.g., logistic regression, 
Cox proportional hazards regression, Poisson regression) are mul-
tiplicative models, and when there is no multiplicative interaction, 
there is additive interaction.  However, verifying the assumptions 
under which departure from additivity imply interaction is not al-
ways straightforward.  Therefore, departures from additivity do not 
necessarily indicate biologic interactions.   Third, lack of interac-
tion, either additive or multiplicative, doesn’t necessarily mean 
that there is no biologic interaction.  This is because detection of 
statistical interaction often needs thousands of cases and controls, 
and many epidemiologic studies are underpowered to detect inter-
actions.   See Section 7.  

6. Special forms of interaction
Some forms of interaction have been given names that are com-

monly used in epidemiological, biological, and medical literature.  
Examples are gene-gene interactions and gene-environment inter-
actions. A PubMed search of “gene-environment interaction” on 
June 2, 2012, resulted in over 4,000 entries. As discussed earlier, 
these terms may have different meanings to biologists, physicians, 
and statisticians.  Partly due to such differences in terminology and 
partly due to subject area, a biologist working on fetal develop-

gene interactions very uncommon.
To biologists and physicians, gene-environment interaction 

most often means that an environmental factor’s effect on body 
depends on a genetic factor.  For example, hypersensitivity to alco-
hol consumption in Asian populations depends on polymorphism 
in ADH2 and ALDH2 genes; those who carry certain polymor-

other symptoms of alcohol hypersensitivity.13,14 Likewise, to biolo-
gists who work on fetal development, gene-gene interaction may 
mean that two or more genes are needed for a certain development 
to occur, and this is an extremely common phenomenon. 

A statistician working on cancer genetics needs departures from 

-
ing such interactions may be uncommon.  While genome-wide as-
sociation studies have found a large number of associations with 
cancer and other health outcomes, gene-gene interactions have 
been rarely found in such studies. 

7. Sample size required to detect statistical interactions
Discussing the details of sample size calculation for interaction 

is beyond the scope of the article.  However, there are at least two 
points worth mentioning.   First, there are several free statistical 
software programs that can calculate sample size to detect statisti-
cal interaction, such as the Power V 3.0 program.17,18 Second, as il-
lustrated below, detecting interactions typically requires very large 
sample sizes.   

Here we compare the sample size for two case-control studies, 

case-control study is to detect an association between the exposure 
X1 and the outcome Y.  Assuming a case to control ratio of 1, two-
sided type I error level of 0.05, power of 0.80, prevalence of expo-
sure of 50% among controls, the study requires approximately 390 
cases and 390 controls to detect an odds ratio of 1.5.   The objective 
of the second case-control study is to determine the interaction be-
tween exposures X1 and X2 in causing outcome Y.  Assuming that 

the prevalence of each exposure is 50% among controls and these 
two exposures are independently distributed, a case to control ratio 
of 1, two-sided type I error level of 0.05, power of 0.80, and that 
each of these exposures increases the risk of Y by 1.5-fold, the 
required sample size to detect an interaction of 1.5-fold would be 
1690 cases and 1690 controls.  While researchers might want to 
leave sample size calculations to statisticians, they should know 
that detecting statistical interactions typically require large sample 
sizes.

Earlier, in Section 1, we mentioned that the presence or absence 

models for the association between the exposure and the outcome, 
multiplicative and additive and models.  Then we discuss the effect 

8.1 Expected results under a multiplicative model
Examine table 1, which shows the percentage of a disease D in 

-
sume that sample sizes are very large and therefore no random er-
rors exist.  If the model is multiplicative, what do we expect to see 
in the cell with question mark?

Table 1.

No X X
No M 1% 4%
M 5% ?

When M is absent (No M row), X increases the risk by 4-fold.  
If X were going to do the same in the presence of M, then risk of 

on D depends on M.  If the number in the cell with question mark is 
20%, the effect of X on disease D is multiplying its risk by 4-fold, 
regardless of the presence or absence of M.  So, if that number is 

be multiplicative.  However, if that number is not equal to 20%, 
then the effect of X on disease D depends on M.  In the latter case 

“multiplicative interaction”.  

8.2 Expected results under an additive model
Table 2 is similar to what we saw in Section 4.1.  However, here 

we ask what we expect if the model is additive. 

Table 2. 

No X X
No M 1% 4%
M 5% ?

In people not exposed to M, X increases the risk by 3%.  If X 
were going to do the same in the presence of M, then risk of dis-
ease D in the presence of both X and Y would be 8% (3% + 5%).  

If the number in the cell with question mark is 8%, the effect of 
X on disease D is adding to its risk by 3%, regardless of the pres-
ence or absence of M.  So, if that number is 8%, there is no effect 
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if that number is not equal to 8%, then the effect of X on disease D 

It should be clear by now that the choice of the model has a direct 
impact on statements regarding interaction.   Assume that in the 
examples above the number in the cell with question mark is 20%.  
In such a situation, there is no multiplicative interaction, as X in-
creases the risk by 4-fold, regardless of presence of M.  However, 
there is there is additive interaction, as X adds to the risk by 3% in 
the absence of M and by 15% in the presence of M. 

In fact, except for when the exposure has no effect, there is either 
multiplicative interaction or additive interaction or both, because 
the absence of one implies the presence of the other.  So, the rel-
evant question is not whether interaction exists; it is what type of 
interaction exists.   See also Examples 5 and 6.

Example 5:  Table 3 shows the percentage of the participants in 
a cohort study who were diagnosed with lung cancer according to 
their exposure to smoking and radon.  Assume that these numbers 
come from a very large sample size, so the numbers given in the 
table are very precise.  In this example, smoking is the exposure 
and lung cancer is the outcome.  The question is whether radon is 

Table 3. 

and radon
Non-smokers Smokers

Not exposed to Radon 1% 10%
Exposed to Radon 3% 30%

First, to examine multiplicative interaction, we assess the risk ra-

smoking multiplies the risk of lung cancer by 10-fold (from 1% to 
10%, or risk ratio = 10).  Among people who are exposed to radon 
(the second row), again smoking multiplies the risk of lung cancer 
by 10-fold (from 3% to 30%, or risk ratio = 10).  Therefore, risk 
ratios are similar across the strata of radon, or the effect of smoking 
on lung cancer in terms of risk ratios does not depend on radon.  
Statistically speaking, radon does not modify the effect of smoking 
on lung cancer in terms of risk ratios, or there is no multiplicative 
interaction between radon and smoking in causing lung cancer.  

Second, to examine additive interaction, we assess risk differenc-
es.  Among people who are not exposed to radon, smoking adds to 
the risk of lung cancer by 9% (from 1% to 10%), whereas among 
people who are exposed to radon, smoking adds to the risk of lung 
cancer by 27% (from 3% to 30%).  Therefore, risk differences are 
different across the strata of radon, or the effect of smoking on lung 
cancer in terms of risk differences does depend on radon.  In statis-

terms of risk differences, or there is an additive interaction between 

Example 6:  Table 4 shows the percentage of the participants in 
a randomized 2x2 factorial trial of two drugs X and Y to treat an 
infectious disease.  Assume that these numbers are very precise.  
In this example, X is the exposure and the infectious disease is the 

X on the disease.  

Table 4. 

No X X
No Y 20% 40%

Y 40% 60%

First, we assess the risk ratios.  Of those who receive neither treat-
ment (the reference group), 20% recover spontaneously.  Among 

recovery (from 20% to 40%).  Among those who do receive Y, X 
increases the chance of recovery by 1.5-fold.  These two are not 

disease (changes the risk ratio from 2 to 1.5).  We may also say 
there is multiplicative interaction.  

Now, we assess differences.  In those who do not receive Y, X 
adds to the chance of recovery by 20%. Among those who do re-
ceive Y, again X increases the chance of recovery by 20%.  There-
fore, additions do not depend on status of Y.  In other words, there 
is no additive interaction. In this example, unlike the previous one, 
there was no additive interaction but there was multiplicative inter-
action.  This emphasizes again that when one type of interaction is 

9. Types of departure from multiplicative and additive models
When the results depart from either multiplicative or additive 

models, they may be more than the expectation or less than the 
expectation.  In such cases, terms that are used are different.  

When the results are beyond our expectation from a multiplica-
tive model, we call it positive multiplicative interaction.  In the 
example used in Section 9, if the number in the cell with question 
mark is more than 20%, there is positive multiplicative interaction.  
If the number is less than 20%, there is negative multiplicative in-
teraction.  If the number is 20%, there is no multiplicative interac-
tion, as there is no departure from multiplicative model.

Likewise, when the results are beyond expectation from an addi-
tive model, we call it positive additive interaction.  In the example 
used in Section 9, if the number in the cell with question mark is 
more than 8%, there is positive additive interaction. If the number 
is less than 8%, there is negative additive interaction.  

The arrow shown in Figure 3 shows positive and negative in-
teractions based on multiplicative and additive models for the ex-
amples in Section 9.  In this graph, any interaction that is positive 
multiplicative, is also positive additive; and any interaction that is 
negative additive, is also negative multiplicative.  But there may 
be cases where there is positive additive but negative multiplica-
tive interaction.  This is a general case.  For an algebraic proof, see 
Box 2. 

Figure 3.
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In this section, we discuss how the choice of the four most com-
monly regression models in epidemiology – i.e., logistic regres-
sion, Cox proportional hazards regression, Poisson regression, and 

Logistic regression, Cox proportional hazards regression, and 
Poisson regression determine odds ratios, and hazard ratios, and 
rate ratios respectively.   Since these are all ratio measures – i.e., 
they show how many folds the risk (or odds or hazard or rate) 
is multiplied by in the presence of exposure – these models can 
determine multiplicative interactions.  In contrast, linear regres-
sion which has a direct link to the outcome determines additive 
interaction, however, risk is rarely modeled using linear regres-
sion.   Since logistic, Cox, and Poisson regression models are very 
popular is epidemiology to model the effect of a risk factor on an 
outcome, and all of these models estimate multiplicative interac-
tion, the default meaning of interaction in epidemiology is “multi-
plicative interaction”.   

It is useful to know that interaction terms in multiplicative mod-
els compare the risk ratio (or odds ratio or hazard ratio) in the pres-

tobacco increases the risk of lung cancer in the presence of radon 
by 10-fold and in its absence by 10-fold. Therefore, the estimated 
interaction is 1 (10 ÷ 10 = 1), which indicates no multiplicative 
interaction.  In Example 6, X increases the chance of treatment 
by 1.5-fold in the presence of Y and by 2-fold in the absence of Y. 
Therefore, the estimated interaction is 0.75 (1.5 ÷ 2 = 0.75), which 
shows sub-multiplicative interaction.  If you are interested in an 
algebraic explanation, see Box 3. 

Thus far, we have studied the effect of a main exposure (X) on an 

In epidemiologic studies, we are often interested in a certain ex-
posure.   Consider Example 1.  The main exposure is tetracycline 

case.  We may be interested in two different exposures and their in-

In Example 5, assume we are interested the effect of both smok-
ing and radon and their interaction in causing lung cancer.  In that 
example, smoking increases the risk of lung cancer by 10-fold re-
gardless of whether the person is exposed to radon.  So, there is 
no multiplicative interaction when we look at the results by row.   
Likewise, radon increases the risk of lung cancer by 3-fold, re-
gardless of cigarette smoking status.  So, there is no multiplicative 
interaction when we examine the results by columns either.   In 
this same table, there is additive interaction, when we look at the 
results by rows (the effect of smoking) or by columns (the effect 
of radon). 

In Example 6, again we see bidirectionality of interaction.  Re-
sults show no additive interaction by rows (increase by 20% in 
each row). Results show no additive interaction by column either 
(increase by 20% in each column).  However, examining the re-
sults by both rows and columns shows multiplicative interaction. 

12. Factorial designs and interactions

the most common of factorial designs in epidemiology and medi-
cine.  In this design, two interventions, X and Y, are used to treat 
or prevent Disease D.  The participants are randomized into four 
treatment arms:  those who receive neither X nor Y; those who 
receive Y but not X; those who receive X but not Y; and those who 
receive both.  Table 5 shows the design.  

Table 5. 
No X X

No Y Disease D % Disease D %
Y Disease D % Disease D %

From the discussions above, it should be clear that factorial de-
signs allow for evaluating the effect of X on Disease D, the effect 
of Y on Disease D, and the interaction between the X and Y.   A 
classic example is the Alpha-Tocopherol, Beta-Carotene Cancer 

Box 2.

Assume that X1 increases the risk of Y by e1, therefore the relative risk associated with X1 is (1+e1).  X2 increases the risk of Y by e2, or the relative risk 
associated with X2 is (1+e2).  
Under an additive model, if both X1 and X2 are present, we expect that the risk of Y will be 1+e1+e2.   Under a multiplicative model, when both X1 and X2 are 
present, we expect that the risk of Y will be (1+e1 2) = 1 + e1 + e2 + e1 2.  Expectation under the multiplicative model is more than the additive model 
by e1 2.  Therefore, positive multiplicative interaction always implies positive additive interaction, and negative additive interaction always implies negative 
multiplicative interaction.  But there can be situations where there is positive additive but negative multiplicative interaction.

Box 3.

Y, X1, and X2.   
In Cox regression models, the natural logarithm of hazard of the outcome is modeled.  The model is shown here:  E(log hazard of Y) = b0 + b1 X1 + b2 X2 + b3 X1 X2.  
In this model b0 is the intercept, b1 X1 is the main effect of X1, b2 X2 is the main effect of X2, and b3 X1 X2 is the interaction term.   Below, we show how this interaction 
term affects the results. 

2 = 0).  In this situation, in the absence of the exposure (X1 = 0), E(log hazard of Y) will be b0, or the hazard 
of Y will be exp(b0).  In the presence of the exposure (X1 = 1), E(log hazard of Y) will be b0 + b1 or the hazard of Y will be exp(b0+b1) = exp(b0 1) .  Therefore, 
the presence of the exposure multiplies the hazard by exp(b1).   In other words, the hazard ratio is exp(b1).  

2 = 1).  In this situation, in the absence of the exposure (X1 = 0), E(log hazard of Y) will be b0 + b2, or the 
hazard of Y will be exp(b0+b2) = exp(b0 2).  In the presence of the exposure (X1 = 1), E(log hazard of Y) will be b0 + b1 + b2 + b3 =  exp(b0 1 2) 

3). Therefore, the presence of exposure multiplies the hazard by exp(b1 3).   In other words, the hazard ratio is exp(b1 3).  
1 is exp(b1

hazard ratio is exp(b1 3 3
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Prevention Study (ATBC Study), in which participants were ran-
domized into receiving alpha-tocopherol only, beta-carotene only, 
both, or neither.19 The aim of this study was to determine whether 
any of these compounds, or a combination of them, can reduce the 
risk of lung cancer.  Many other well-known examples are found 
in the medical literature.20,21

Some authors have argued that if two exposure cause a disease 
beyond an additive model (positive additive interaction), that 

22 An example 
will clarify why this is the case.

Assume that the lifetime risk of a disease in the absence of its two 
main causal risk factors (A and B) is 1%.  Again, assume that risk 
factor A alone increases the risk by 5% (increases by 4%, or 5-fold) 
and risk factor B alone increases the risk from 1% to 6% (by 5%, or 
6-fold).  If both risk factors are present and the model is additive, 
they should increase the risk to 10% (1% + 4% + 5%).   In such 
a condition, removing factor A decreases the risk by 4%, regard-
less of the presence of B.  However, if the model is multiplicative, 
which is beyond additive, the risk of this disease in the presence of 

removing A when B is present will decrease the risk the risk from 
30% to 6% (by 24%).  Therefore, in the presence of an interaction 
that is beyond additive, public health actions in reducing at least 
one of the risk factors become very important.  Ironically, in most 
statistical models used in epidemiologic studies, interaction means 
departure from a multiplicative model, not an additive model.    

mediators)
The exposure and the outcome are the two main variables when 

However, there are other third variables that may affect the associa-
tion between the exposure and the outcome, including confounders 

-
ers, and mediators has been described in a previous article.23

It is important to note that mediators in general are effect modi-

exposure) increases the risk of low birth weight (the outcome) be-
cause of mother’s limited access to adequate and nutritious food 
(the mediator).   If the government of a country decides to provide 
adequate and nutritious food to all mothers, then poverty will not 
increase the risk of low birth weight.  Therefore, provision of ad-

outcome.  However, the converse is not necessarily true.   As dis-

15. Interactions and adjustment
When an exposure acts as a confounder, we usually adjust for 

the exposure and the outcome.   However, do we adjust when the 

There are occasions where an exposure may be both a confound-
23  For example, the unadjusted odds ra-

tio for the association between exposure E and disease D may be 
2.00.  When we stratify by sex, the odds ratio for men and women 
are 1.50 and 1.00 (p for interaction = 0.001), respectively, and the 
Mantel-Haenszel weighted average of these two numbers is 1.20.  

Here, sex acts as a confounder, as the adjusted odds ratio of 1.20 
is different from the unadjusted odds ratio of 2.00.  Sex also acts 

women.  
The decision to adjust depends on whether or not we believe the 

differences are due to chance; whether the differences are qualita-
tive or quantitative; and how different the relative risk estimates 
are when we stratify them.  When we stratify by subgroups, each 
subgroup may have a small number of subjects and therefore 
widely different relative risks may be found among the subgroups 
solely due to chance.  If so, we tend to take a weighted average 
of the results and report adjusted relative risks.  If, however, the 

a combined adjusted value, or separate values, based on the mag-
nitude and type of differences.  For example, if the relative risk 
is 1.90 for men and 2.15 for women (p = 0.001), even though the 
results are statistically different across the strata of sex, we may 
choose to combine the results (e.g., relative risk =2.03), as they 
both indicate an almost an almost doubling of the risk in men and 
women.  In contrast, if the relative risk is 3.00 for men but 0.50 for 
women (p = 0.001), we may choose to report the results separately, 
not combined, as the exposure increases the risk of the disease of 
interest in men but decreases the risk in women.  In this latter case, 
a combined relative risk (e.g., relative risk =1.50) may conceal the 
different effect of the exposure on men and women.

Conclusions

effect, occurs when the effect of an exposure on an outcome de-

presence of interaction or lack thereof depend on what the term 
“effect” means, or on the choice of model.  The model may be ad-
ditive or multiplicative; no additive interaction implies multiplica-

-

important biological facts, we need to keep in mind that statisti-
cal interactions do not necessarily imply biological interactions; 
random variation, confounding, bias, measurement error, presence 
of competing risk factors, and differential intensity of exposure are 
among other reasons that can lead to statistical interactions.  Alter-
native explanations should be ruled out before making a biologic 
conclusion.  Finally, results that are beyond expectations from an 
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