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Introduction 

Epidemiologic studies have made major contributions to the 
discovery of the causes of disease and health, some exam-
ple of which are shown in Table 1. But what do we mean by 

a cause in epidemiology? How do we establish causality? How 
certain are we that the studied factor causes the disease of interest?  
Answering these questions is the subject of this article.    

In this article, we discuss the following topics: 
1) the meaning of cause in epidemiology; 
2) association versus causality;
3) alternatives to causality when associations are observed;
4) Hill’s causality criteria;
5) two case studies;  
6) the strengths and limitations of epidemiologic studies in es-

tablishing causality;
7) more recent developments in analyzing causality in epidemi-

ology;
8) probabilities and causation;
9) religion and causation;
10) philosophy and causation. 

1.  The meaning of cause in epidemiology

A factor causes a disease if it increases the probability of the 
occurrence (incidence) of that disease. For example, “smoking 
causes lung cancer” means that smoking increases the incidence 
of lung cancer; lifetime risk of lung cancer is 17% in male smok-
ers versus 1% in male non-smokers.1   

Probability, in relative frequency terms, is a number assigned to 
a population, not to a single individual.  The choice of probability 
in our de�nition is partly because often we cannot unequivocally 
establish the cause in a single individual – thus we need to resort 
to probability in a population – and partly because it is consistent 
with the nature of public health.   

Let’s �rst discuss the dif�culty of identifying the cause in a 

single individual. Assume that a 68-year-old man diagnosed with 
lung cancer wants to know why he got this cancer. Was it because 
he smoked for 5 years, between ages 30 and 35? Was it because 
during his college years he lived in a basement and might have 
been exposed to radon? Was it because he was exposed to passive 
smoking when he rented a home with three smoker friends? Or 
was it due to other reasons, as each year there are thousands of 
people around the world who get lung cancer and have not been 
exposed to any of the above-mentioned factors.  The only way to 
know is to go back in time, change one of those factors, and see 
what happens. But this is counterfactual; nobody can do that, and 
the cause remains a mystery. One can only make good guesses.   

It might be possible, however, to identify the causes of a revers-
ible outcome (e.g., migraine headaches, asthma attacks, or sei-
zures) in an individual using cross-over studies. If the number of 
asthma attacks substantially increase in a certain person any time 
he eats strawberries, then he might conclude with reasonable cer-
tainty that strawberries cause his asthma attacks. This is particu-
larly true if the attacks happen after eating strawberries under a 
variety of circumstances, for example, when he eats strawberries 
during both the summer time and winter time and the same thing 
happens. If so, one could be more certain that the causative prob-
lem is strawberry not factors that are associated with it (e.g., other 
seasonal berries) that may act as confounders. However, this is not 
the general case. As mentioned above, we often need to resort to 
probabilities, certainly so if the outcome is not reversible. 

Now let’s discuss the consistency of probability with the nature 
of public health. Public health deals with the health of a society, 
not an individual. Compared to a scenario that all people in the 
society smoke, a complete ban of smoking reduces the percentage 
of individuals who will ever get lung cancer from 17% to 1%. 
This is a great bene�t to the health of the society.    

2. Association versus causality

When a factor causes a disease, it increases its probability. 
Smoking substantially increases the lifetime incidence of lung 
cancer, human papillomavirus dramatically increases the risk of 
cervical cancer, and H. pylori increases the risk of stomach cancer. 
These are all examples of causes.   

This leads to thinking that when our studies show that in the 
presence of an exposure (E), the risk of a disease (D) is increased, 
E should be a cause of D. However, this is not necessarily correct. 
Increased risk of a disease in the presence of an exposure is called 
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a positive association between E and D. However, as described 
below, an association doesn’t necessarily imply a causal relation-
ship, because there are other alternative situations in which asso-
ciations can happen. The next section describes these alternatives.   

3. Alternatives to causality when associations are 
observed  

When a study shows an association between the exposure E and 
the disease D, i.e., when the risk of D is increased or decreased in 
the presence of E, there are at least �ve explanations. Association 
can be due to random variation, bias, confounding, reverse cau-
sality, and �nally causality (Figure 1). Before concluding that E 
causes D, the other four alternatives should be ruled out. 

 

Figure 1.  Alternatives to a causal association include random variation, 
bias, confounding, and reverse causality.  

3.1. Random variation
An association between an exposure and an outcome may occur 

in one or more studies solely due to random variation (also known 
as luck or chance). For example, a cohort study may report an 
association between eating oranges and higher risk of depression. 
However, it might have been just by coincidence that those who 
ate more oranges in that cohort study were also more likely to be 
depressed, whereas in reality (i.e., if we study all people, not just 
that cohort) there may be no association between eating oranges 
and depression.  

We use statistical signi�cance tests and 95% con�dence inter-

vals to judge whether an association is due to random variation. 
Since most studies consider P-values less than 0.05 as statistically 
signi�cant, there is a 5% chance that any statistically signi�cant 
association may be due to chance (type I statistical error). Howev-
er, the proportion of results reported in medical and public health 
literature that are due to random variation is substantially higher 
than 5%. Researchers analyze the data in many different ways to 
�nd signi�cant results; authors are more likely to include their 
statistically signi�cant results in their papers and to submit them 
for publication; and journals editors and reviewers are more likely 
to be interested in signi�cant �ndings.2–4 These are all reasons 
for higher publication rates of statistically signi�cant �ndings, a 
phenomenon that has been termed publication bias.4 The British 
economist and Nobel Laureate Ronald Coase is quoted to have 
said: “If you torture the data long enough, they will confess”.  

3.2. Bias
Bias is a systematic error in design, conduct, analysis, or report-

ing the results of a study. Various biases in a study may also result 
in associations that are not causal. Detailed descriptions of de�ni-
tion and types of biases in epidemiologic studies have been pro-
vided in articles5 and textbooks.6 Here we suf�ce to provide one 
example of bias to show how it results in a non-causal association. 

Example 1:  In a case-control study, investigators interviewed 
mothers of individuals with schizophrenia (as cases) and mothers 
of healthy volunteers (as controls) for obstetric complications.7 
Mothers of schizophrenic patients were more likely to report 
obstetric complications. However, reviewing hospital records 
showed no difference in such complications comparing case and 
control groups. The researchers concluded that the apparent asso-
ciation between obstetric complications and risk of schizophrenia 
was due to reporting (recall) bias; mothers of cases simply recalled 
or reported such events more, while there was no difference. 

 3.3. Confounding
Confounding factors (confounders) are variables that are asso-

ciated with both the exposure and outcome of the study but are 
not in the pathway between the exposure and outcome. A detailed 
discussion of the de�nition, methods to identify, and methods to 
address confounding has been provided in a previously published 
article.8 Here, we provide one example to show how a confound-
ing factor may result in a non-causal association.  

Example 2:  Ginseng, an herb mainly cultivated in China and 

Health outcome Cause

Cardiovascular diseases

Tobacco smoking
High LDL cholesterol 
High blood pressure
Obesity
Diabetes

Lung cancer
Tobacco smoking
Asbestos
Radon

Cervical cancer Human papillomavirus
Gastric cancer H. pylori

Esophageal cancer (squamous type) Tobacco smoking
Alcohol consumption

Liver cancer
Hepatitis B virus
Hepatitis C virus
A�atoxin

Stroke High blood pressure
Diabetes

Diabetes Obesity

Table 1. Epidemiologic studies have contributed to identifying several hundred causes of diseases.  Some salient examples are shown below.
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Korea, is often used for medicinal purposes.  Some people be-
lieve that it can strengthen the body and prevent diseases. A cohort 
study that investigated the association of ginseng with gastric can-
cer in China found that, contrary to initial expectations, ginseng 
increased the risk of gastric cancer by 40% (relative risk of 1.40).9 
However, the investigators realized that ginseng was not the cause 
of gastric cancer. The apparent association was because of age, 
which was a confounder in this study. Older people were more 
likely to use ginseng and they were more likely to develop gastric 
cancer, thus age was associated with both the exposure and the 
outcome (Figure 2).   

Age 
  

 
 
 
 
Ginseng intake        Gastric cancer 

Figure 2.  Increased risk of gastric cancer associated with ginseng intake 
is explained by age.

3.4. Reverse causality
When an association is shown between two factors, sometimes 

it is dif�cult to establish which one caused the other. See two ex-
amples below.

Example 3: Many studies have shown that job loss is associated 
with poor health and some researchers strongly believe that job 
loss leads to poor health. However, some researchers show evi-
dence that it is not job loss that leads poor health.10 It may rather 
be that poor health leads to low job functionality and hence losing 
ones job.  

Example 4: The results of a cohort study showed an almost dou-
bling of risk of death in opium users.11 Before concluding that 
chronic opium use causally increases the risk of death, one needs 
to examine whether reverse causality may explain the association. 
It may be that people who had manifestations of chronic diseases 
(such as chest pain) used opium to alleviate their pain, thus the 
association between opium use and death might have been due to 
reverse causality.  

3.5. Causal associations
When all of the above explanations for an association are ex-

cluded, a causal association may be concluded. For example, we 
are now almost sure that tobacco smoking causes lung cancer, or 
that human papillomavirus causes cervical cancer. The process of 
establishing causality is similar to establishing guilt in a court: 
when we exclude all the other possibilities beyond reasonable 
doubt, we are satis�ed that the exposure causes the outcome. Sec-
tion 4 shows what evidence we need to establish causality. 

4. Hill’s causality criteria

Sir Austin Bradford Hill, an eminent British biostatistician and 
epidemiologist, set forth a number of guidelines to help us deter-
mine whether or not an association should be considered as caus-
al.12 These guidelines, later named “Hill’s causality criteria”, have 
been widely used in epidemiology to establish causality. It is im-
portant to note that except for correct temporal sequence, perhaps 
none of these are necessary to establish causality. However, each 

one provides a clue, and when most of these points can be estab-
lished, causality is very likely. Below, we discuss Hill’s criteria.  

4.1. Strength of association
The �rst criterion that Bradford Hill suggested was strength of 

association, by which he meant a relatively high relative risk for 
the association between exposure and outcome. Examples of ex-
tremely strong associations include the association between hu-
man papillomavirus and cervical cancer (relative risk of approxi-
mately 16013) and smoking and lung cancer (over 50-fold for very 
heavy smokers14).    

Very strong associations help in ruling out some of the alterna-
tives to causality (Section 3) in favor of a real causal association. A 
very strong association with a narrow con�dence interval around 
the estimated relative risk is very unlikely to have happened due to 
random variation. It is unlikely to have happened due to confound-
ing or bias either. Confounders should be more strongly associated 
with the outcome and exposure to cause an apparent association.8 
If the relative risk for association between HPV and cervical can-
cer is 160, then the confounder should be even more strongly as-
sociated with cervical cancer; there is no evidence for the presence 
of such a strong confounder. Notwithstanding these facts, causal 
relationships may still be believable with relatively small relative 
risks, too. For example, large double-blind, randomized trials have 
shown that taking �-carotene supplements increases the risk of 
lung cancer only slightly (relative risk of approximately 1.215,16) 
but because of the strength of design of these studies, even such 
relatively weak associations are acceptable. 

4.2. Consistency of association
This criterion refers to getting the same result when repeating the 

study under different circumstances. For example, when the Sur-
geon General of the United States declared in 1964 that tobacco 
smoking causes lung cancer, results from at least 29 retrospective 
and 7 prospective studies had nearly all shown an increased risk of 
lung cancer in relation to smoking.17 When the results are repeated 
in a variety of circumstances, they are unlikely to have been due 
to random variation, a certain bias, or confounding. Therefore, 
consistency helps in refuting alternative explanations in favor of a 
real causal association. Nevertheless, consistency is neither neces-
sary nor suf�cient to establish causality. For example, studies may 
consistently �nd an association between short-term job loss and 
poor health yet it may be dif�cult to establish that job loss causes 
poor health, as the association may be due to reverse causality.

4.3. Temporality
Temporality refers to the temporal sequence of the studied expo-

sure and the outcome. Which one came �rst? This criterion helps 
substantially in distinguishing causality from reverse causality. 
In Example 3, if we show that poor health happened only after 
job loss, and not before it, we can more readily establish that job 
loss caused poor health. Likewise, in Example 4, if we show that 
opium use was initiated well before the signs and symptoms of 
major chronic diseases started, we can more strongly reason that 
opium caused diseases leading to death. 

4.4. Dose-response gradient
If the probability of the outcome is increased with increasing 

exposure to the risk factor, there is a dose-response relationship 
between the risk factor and the outcome. This is true for many 
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causes of diseases.  For example, the longer and the more intense-
ly one smokes tobacco, the more likely it is that one would get 
lung cancer.14 Likewise, increasing exposure to alcohol consump-
tion increases the risk of esophageal squamous cell carcinoma in 
a dose-response manner.18  

Showing dose-response helps in attenuating the possibility of the 
presence of random error, confounding, and bias. This is because un-
less the confounder also increases in a dose-response manner in rela-
tion to the exposure and outcome, it is unlikely that we see a dose-re-
sponse association between a confounded exposure and the outcome.  

4.5. Biologic plausibility
If we know the mechanism through which the exposure can 

cause the outcome, we can infer causality on more solid grounds. 
Consider the association between smoking and lung cancer. A 
great deal is now known about chemical agents in tobacco smoke, 
such as polycyclic aromatic hydrocarbons, which after activation 
in the body can react with DNA, form adducts, cause mutations, 
and lead to cancer formation.19  Likewise, we know how HPV can 
cause cervical cancer. The HPV E6 oncogene results in the pro-
duction of a protein that ultimately destructs p53 protein, a tumor 
suppressor.20 This in turn leads to higher rates of mutation and 
lower rates of apoptosis, leading to formation and maintenance of 
cancerous cells.   

Although biologic plausibility is important, Hill believes that we 
cannot demand this to show causation.  Proposing biologically 
plausible mechanisms depends on the scienti�c knowledge of the 
day. Hill recounts the example of higher risk of scrotal cancer in 
chimney sweeps. In 1775, Percival Pott, an eminent surgeon of 
his time, found that nearly all cases of scrotal cancer were among 
chimney sweeps.21  The relative risk for the association between 
working as a chimney sweep and scrotal cancer has been estimat-
ed to be as high as 200.22 At the time, nothing was known about 
the carcinogens in soot, so there was no way to know whether this 
association is biologically plausible. Nevertheless, this extremely 
strong association could not have been explained by random vari-
ation, bias, confounding, or reverse causality.  When all other op-
tions are eliminated, causality is the only remaining explanation. 

4.6. Analogy
If previously established causal analogues to the association under 

study exist, it may be easier to accept a causal relationship. For exam-
ple, when it was found that tobacco smoke caused lung cancer, it was 
easier to accept that it could cause bladder cancer too. Likewise, since 
we knew that hepatitis B virus could cause liver cancer, it was not dif�-
cult to accept that hepatitis C virus could also cause liver cancer. While 
analogy is not a strong reason for causality, it does help. 

4.7. Experiments
Large-scale randomized experimental studies are extremely ef-

fective in eliminating the possibility of confounding and in reduc-
ing bias. As such, results of experimental studies are given prime 
consideration in judging causality. For example, although only a 
few large-scale, randomized studies have shown an association 
between taking �-carotene supplements and higher risk of lung 
cancer,23 and the relative risks have been quite small (approxi-
mately 1.215,16), it is now widely accepted that �-carotene supple-
ments can cause lung cancer.  

4.8. Coherence
Coherence refers to compatibility of the presumed causal effect 

with the rest of our knowledge. For example, we know that in 
1900 lung cancer was a rare disease in the United States.24 Rates 
of this cancer started increasing only 20 years after the mass mar-
keting of cigarettes. This makes it easier to accept the causal as-
sociation between smoking and lung cancer.  

4.9 Specificity
By speci�city, Hill meant one cause for one effect. However, 

this criterion can be easily discarded today.  One exposure can 
cause many outcomes, and one outcome may be caused by many 
exposures. For example, tobacco smoking causes a multitude of 
diseases, including laryngeal cancer, lung cancer, esophageal can-
cer, bladder cancer, coronary heart diseases, and cerebrovascular 
diseases, to name a few.   Likewise, coronary heart disease can be 
caused by smoking, high cholesterol, high blood pressure, and a 
number of other exposures. So why did Hill suggest this criterion? 
Perhaps because in the 1950s, when he started thinking about cau-
sality, particularly of a causal relationship between smoking and 
lung cancer, it was when infectious agents were the best known 
causes of diseases, and the relationships in infectious diseases are 
usually one to one (e.g., Treponema pallidum and syphilis).  

 
5. Two case studies

In this section, we review two case studies: tobacco smoking and 
esophageal adenocarcinoma (widely accepted as a cause), and al-
cohol consumption and esophageal adenocarcinoma (generally 
thought not to be cause).   

5.1. Tobacco smoking and esophageal adenocarcinoma
Dozens of studies have examined the association between tobacco 

smoking and esophageal adenocarcinoma. The Barrett’s Esophagus 
and Esophageal Adenocarcinoma Consortium (BEACON) included 
data from studies that had a large enough number of esophageal 
adenocarcinoma cases and were either cohort studies (2 studies) or 
population-based case-control studies (10 studies) to examine this 
association in detail. Nearly all 12 studies showed an increased risk 
(consistency). The overall odds ratio for this association was ap-
proximately 2-fold (moderately strong). When data were examined 
by pack-years of smoking, compared to never-smokers, relative risk 
increased from 1.25 for those who had used less than 15 pack-years 
to 2.71 for those who had used more than 45 pack-years of tobacco 
(dose-response). There are many biologic reasons why smoking 
can cause cancer, e.g., its effects leading to P53 mutations (biologic 
plausibility). Study participants had on average started using tobacco 
when they were 17 years old but received cancer diagnosis several 
decades later (temporality). Tobacco smoking can cause many other 
cancers, including esophageal squamous cell carcinoma (analogy). 
There are no experimental studies of tobacco smoking and esopha-
geal adenocarcinoma but most of the  existing studies adjusted for a 
number of confounders, and the results remained strong. Trends of 
the rise of smoking do not necessarily predict the rise in incidence 
of esophageal adenocarcinoma, but this is not incoherent with what 
we know about this cancer. This cancer has several other known and 
unknown risk factors. 

5.2.   Alcohol consumption and esophageal adenocarcinoma
BEACON investigators also analyzed the results of these studies 

for alcohol consumption in relation to esophageal adenocarcino-
ma.25 In contrast to smoking, the results were not consistent across 
studies, with some showing increased risk for certain alcoholic 
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beverages, while others showed no association. The odds ratio for 
the association between drinking even very large amounts of alco-
hol (� drinks per day) and esophageal adenocarcinoma was 0.97, 
and there was no dose-response. These negative �ndings pointed 
to no association, and hence no causal relationship.

6. The strengths and limitations of epidemiologic 
studies in establishing causality

Epidemiologic study designs vary in their strengths in establish-
ing causality, partly because they differ in their strength in ful�ll-
ing Hill’s guidelines.  

Large-scale randomized, double-blind, controlled trials are the stron-
gest study designs. Large sample size minimizes the possibility of ran-
dom variation. Because the distribution of the exposure is determined 
at random, no factor is associated with the exposure. Thus there is no 
factor that is associated with both the exposure and the outcome, and 
hence no confounding exists. Since these studies are prospective in 
nature – study participants receive the exposure before the outcome – 
temporality is established; in other words, reverse causality is unlikely. 
Making the study randomized, double-blind, and controlled all reduce 
the possibility of biases. Since this type of study minimizes the pos-
sibility of random variation, confounding, reverse causality, and bias, 
if an association is seen it is likely to be causal. 

Observational studies, such as cohort and case-control studies, 
are subject to confounding and several biases. For example, co-
hort studies may be subject to bias due to loss to follow-up, or 
case-control studies may be subject to recall bias. Therefore, their 
results are slightly more dif�cult to interpret as causal. However, 
we strongly rely on observational studies, as randomized trials are 
not feasible to investigate most associations. 

7. More recent developments

Hill developed his guidelines on causality during the 1950s and 
early 1960s, when he was trying to infer whether certain workplace 
exposures could be health hazards and whether smoking could cause 
lung cancer. They have been useful enough that, after 50 years, we 
still use some of them to show that an exposure has a causal relation-
ship to an outcome. Nevertheless, much has been done since then to 
improve our ability to establish causal connections.  

Regression models are now widely used to control for confound-
ers. Observational studies remain important sources of informa-
tion in epidemiology, but their results are highly subject to con-
founders.  To deal with this problem, several regression models 
have been developed in the past few decades. Jerome Corn�eld, 
in addition to his many other contributions,26,27 developed odds 
ratios and logistic regression in the 1950s to 1960s and applied 
the results to epidemiologic studies (including those of the Fram-
ingham Study28), which opened the way for better handling of con-
founders when the outcomes was binary. Future developments ex-
tended the use of logistic regression to ordinal outcomes and non-or-
dinal categorical outcome with more than two categories. Sir David 
Cox developed his proportional hazards model regression in 1972,29 
which paved the way for dealing with confounders in time-to-event 
analyses. Use of these methods became popular only after computer 
power became more available to handle the extremely involved 
mathematical calculations, i.e., mostly after 1985.  

The use of Directed Acyclic Graphs (DAGs) is becoming increas-
ingly common for causal inference in epidemiology. They help in 
conceptual understanding and identifying confounding and bias.  

The idea was initially developed by computer and arti�cial intel-
ligence scientists, such as Pearl,30 but it was later adopted by other 
�elds, such as epidemiology and economics. DAGs, as their name 
implies, are graphs and that have a direction from the cause to the 
effect (e.g., from smoking to lung cancer, and not the other way) 
and are not cyclic (only one-sided). To make a causal DAG, the 
common cause of any pair of the variables in the graph should also 
be present in the graph. For example, if we study the association 
between smoking and lung cancer, any variable that is a common 
cause of both smoking and lung cancer should also be in the graph. 
If none exists, we are done. However, if we add a third variable, 
then any variable that causes this third variable and the other vari-
ables (smoking or lung cancer) should be added, and so on and so 
forth. Therefore, the use of DAGs requires prior expert knowledge, 
and not all experts may agree on which variables should be added 
to the graph. Also, these graphs are mostly qualitative rather than 
quantitative, and do not address random variability. So, although 
their use provides some insight, it does not solve all problems. Also 
their use may result in a more uniform nomenclature in epidemiol-
ogy that stems from the structure of the relationship of variables. 
For example, certain forms of selection bias may also be called 
confounding, and both can be addressed using adjustment methods, 
however, different terminology may confuse the researchers. Using 
DAGs, we will see that these two differently named problems are 
in fact one, and therefore could be named similarly. The common 
use of DAGs in epidemiology is a relatively recent phenomenon. 
In 2000, for example, teaching DAGs was not part of the curricu-
lum of doctoral epidemiology students at Johns Hopkins Univer-
sity School of Public Health  and Hygiene or most other prominent 
schools of public health. Likewise, there was no chapter on DAGs 
in the 2nd edition of Modern Epidemiology, which was published in 
1998.31 It was only in the 3rd edition of the book, published in 2008, 
when a chapter on DAGs was added.32 Nevertheless, the insight 
provided by these graphs is now making it a common tool for un-
derstanding causal relationships.  

Counterfactual-based approaches have been used in the past 
three decades to derive methods for causal inference. These meth-
ods that originated in statistics and were developed by Donald 
Rubin and other statisticians are powerful statistical tools but are 
often cumbersome and dif�cult to understand. Partly because of 
the novelty of the methods, and partly because of their dif�culty, 
as of yet they are not as commonly used in epidemiology as the 
other methods mentioned above. However, there is intensive on-
going research and education in this �eld, and the use of these 
methods may become common in the not-so-distant future.   

8.  Probabilities in causal inference and prediction

Why do we need to use probabilities, complex study designs, 
and complex statistical methods in epidemiology? After all, with-
out any of these methods, we develop some understanding of 
cause and effect from the time we are born. At early ages, we 
learn that crying expedites our being fed, clicking a switch turns 
on the light, dropping a stone causes it to fall, and pushing an 
object makes it move. However, most of these examples refer to 
nearly one-to-one and instant relationships between cause and ef-
fect (e.g., dropping and falling of the stone). However, in epide-
miology and medicine, unfortunately there is a long lag between 
cause and effect (e.g., between the time one picks up smoking and 
the time one gets lung cancer), and the relationship is not one-to-
one, partly due to the effect of other factors and partly due to luck. 
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So we often need to leave aside our simple intuition and resort 
to more complex probabilistic methods. The downside of using 
these probabilistic methods is that they are dif�cult to understand, 
and the rationale for using them is dif�cult to communicate to lay 
people. When the people, who are the consumers and voters, don’t 
understand the debate, they get confused and may lose their trust. 
For example, scienti�c data are against the hypothesis that vac-
cines cause autism, yet there are many people who are still hesi-
tant about vaccinating their children, fearing that pharmaceuticals 
producing the vaccines are trying to silence the scientists who 
identi�ed the problem! Fortunately, however, science has gained 
enough respect among people that when scientists understand the 
issue, and repeat their conclusions to people many times, most of 
the population accepts the consensus. 

Some may attribute the probabilistic nature of causality to our 
current ignorance and hope that there will be one day, when our 
scienti�c knowledge is vastly greater, that we can �nd causes 
much more easily, and that we predict with accuracy whether or 
not a person will get a disease, e.g., cancer. While I am not sure 
about the former (�nding causes), I believe there is good evidence 
that the latter (predicting with accuracy) may never happen. There 
are theoretical grounds from physics that certainty may not be pos-
sible,33 and from computer science that exact predictions in tre-
mendously complex situations may not be feasible.34 There is also 
empirical evidence from studying humans to show this. Identical 
twins share almost their entire genetic code and a considerable part 
of their intrauterine and childhood environment, yet the concor-
dance of cancer occurrence in monozygotic twins is far from per-
fect.35 In a Nordic cohort, of 248 monozygotic brothers who were 
diagnosed with lung cancer, for example, only 15 were concordant 
for lung cancer and 233 were not.35 Indeed, the concordance rate 
between monozygotic twins for any type of cancer is usually 0.1 or 
less.35 More convincing data come from studying natural history of 
cancers in single individuals and using our knowledge of biology. 
A woman shares with herself the entire genetic code and environ-
mental exposures. Yet it happens often that one breast develops 
cancer whereas the other one does not. Indeed, several years after 
development of cancer in one breast, risk of contralateral breast 
cancer is still far from certain, even when contralateral prophy-
lactic mastectomy is avoided.36 More broadly, according to our 
current knowledge of cancer biology, most cancerous tumors are 
monoclonal. Only one cell out of millions or billions found in an 
organ develops into a full-blown tumor, whereas the adjacent cells, 
which should be identical in many ways, do not. All of this evi-
dence points to impossibility of predicting cancer in an individual 
person with certainty. In one of his last articles,37 Sir Richard Doll 
seems to have expressed a similar belief: “…only a relatively small 
proportion of people are victims of a particular type of cancer even 
if heavily exposed to known chemical carcinogenic agents … the 
fact that only, say, 20% of heavy cigarette smokers would develop 
lung cancer by 75 years of age does not mean that 80% are geneti-
cally immune to the disease … whether an exposed subject does or 
does not develop cancer is largely a matter of luck.”  

9.  Religion and causation

Our philosophy and religious views in�uence on our under-
standing and acceptance of causes. People have long known that 
there is a chain of causation. They may ask, for example, what 
causes lung cancer?  The answer to a biologist may be mutations 
in P53 gene. An epidemiologist may ask what causes that?  The 

answer: smoking. A behavioral scientist may ask what caused that 
person to pick up smoking?  These questions may go on, until we 
seek “an ultimate” cause, and for many people that would be “the 
Will of God”. One might ask how this is relevant to public health? 
I believe it is very relevant. I have seen many people take no or 
little action about their health for two reasons. Being confused 
by the probabilistic (and not completely one-to-one) nature of the 
occurrence of outcomes and believing in the Will of God as the 
ultimate cause, many decide to take no action, for example not 
to undergo screening for cervical cancer. However, they miss the 
point that although health outcomes are not certain, they are not 
completely random either. Also, they miss the point that although 
most religions attribute outcomes to the Will of God, they also en-
courage people to take actions. Such discussions may help people 
take actions in the right direction. If we eliminate smoking, we 
can reduce the lifetime incidence of lung cancer from 17% to 1%, 
and that is a step in the right direction. 

10.  Philosophy and causation 

The question “What is a cause?” has a long history among phi-
losophers. Over the past few decades, epidemiologists have en-
thusiastically studied and debated different philosophical views 
on causation, not only those of centuries ago, but also those of the 
20th century’s philosophers of science, such as Popper, Kuhn, and 
Feyerabend.38–41 Epidemiologists have done so partly as an intel-
lectual exercise and partly in the hope that this knowledge will 
help them expedite the rate of discovering causes. In my view, 
thus far the most important use of these philosophical debates has 
been the intellectual stimulation; it has not been a major help with 
more rapid discoveries. Whereas it is interesting to read about 
Kuhn’s philosophy of science (e.g., normal science and scienti�c 
revolutions), it has made little impact on �nding the causes of dis-
eases. For the past 100 years, we have believed in the existence of 
cells, molecules, atoms, the power of microscopes, etc.   Whereas 
in 500 years this may undergo a revolution, such that we com-
pletely lose faith in the presence of an entity called atom, it has 
little bearing on our today’s research.  

However, these deliberations have at times resulted in adoption 
or development of some useful concepts or models. For example, 
a causality model hat is somewhat interesting and helps in better 
understanding some parts of epidemiology is the “suf�cient cause 
model”.42 A suf�cient cause is a collection of a number of events 
(component causes) that need to come together for an outcome 
to happen. For example, for Anna-Maria to die of liver cancer, 
she must have skipped vaccination against HBV, get HBV from 
sharing needles with an HBV-infected college classmate, not 
have health insurance to get tested and treated in time, etc. All 
of these need to happen for her to die of liver cancer. Which one 
is a cause? The answer is: “each and every of them”. If we could 
reverse only one of these steps, e.g., she had received the vaccine, 
she would have not got liver cancer. Learning this concept facili-
tates learning some aspects of epidemiology better. For example, 
we understand why the sum of individual attributable risks could 
be much higher than 100%. If A and B are both needed for Y to 
happen (Figure 3), then the risk of Y attributable to A is 100%, and 
the risk attributable to B is also 100%, as when either of these is 
eliminated, Y is completely eliminated. In Figure 3, U is a collec-
tion of other unknown agents, which as mentioned earlier may be 
knowable or unknowable. 
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Figure 3.  Factors A and B, in addition to a number of unknown factors 
(collectively called U) are needed for Y to happen. A, B, and U are called 
component causes, which together make a suf�cient cause.

Summary and conclusions 

Epidemiologists have signi�cantly contributed to the discovery of 
numerous causal relationships.  Nevertheless, establishing each causal 
relationship has been a monumental task, usually requiring many stud-
ies to show consistency of the association and to rule out other poten-
tial possibilities, including random variation, bias, confounding, and 
reverse causality. Ruling out other explanations still remains the key.  

Guidelines developed by Hill and others, although neither suf�-
cient nor necessary, have helped us over the past 50 years in dif-
ferentiating between causal and non-causal relationships, and they 
remain relevant today. Since then, advances have been made to our 
methodology, including the introduction and popularization of re-
gression techniques, DAGs, and counterfactual models. With the 
advancement of technology and statistical techniques, we are nearly 
certain that more and more causes of diseases will be discovered, 
however, it might be impossible for us to know it all, or to predict 
with certainty the occurrence of an outcome in a single individual. 
Such uncertainties should not deter us from taking steps in the right 
direction. Reduced cigarette consumption has already resulted in 
lower risk of lung cancer in American men,43 and vaccination against 
HBV in Taiwan led to a signi�cant reduction in risk of liver cancer.44 
Efforts should continue to �nd more couses, and to communicate 
our �ndings in a simple and understandable way to the public.  
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