Original Article

Increase in Resistance Rates of *H.pylori* Isolates to Metronidazole and Tetracycline-Comparison of Three 3-Year Studies

Farideh Siavoshi PhD¹, Parastoo Saniee MSc¹, Saeid Latifi-Navid PhD², Sadegh Massarrat MD³, Arghavan Sheykholeslami MD³

Abstract:

Background: Antimicrobials have been useful in the treatment of *H.pylori*-related dyspeptic diseases. However, emergence of resistant strains often decreases the eradication rates of *H.pylori* infections. Large-scale use of antimicrobials will lead to the diminishment of susceptible strains while allowing resistant survivors to outgrow and spread resistance genes. The aim of this study was to assess the change in antimicrobial resistance rate of *H.pylori* isolates from 2005 to 2008 and indicate the consequences of indiscriminate and widespread use of antimicrobials against *H. pylori*- and non-*H.pylori*-related infections.

Methods: A total of 110 *H. pylori* strains were isolated from dyspeptic patients during 2005 to 2008 and tested for their susceptibility to antimicrobials using the disk diffusion method. MICs were determined for metronidazole (8 μg/mL), tetracycline (0.5 μg/mL), clarithromycin (2 μg/mL), amoxicillin (1 μg/mL) and furazolidone (0.5 μg/mL). Since the rates of resistance to metronidazole and tetracycline were remarkably high, another 50 isolates were tested for their susceptibility to metronidazole at the same MIC (8 μg/mL) and tetracycline at MICs of 0.5,1 and 2 μg/mL. Resistance rates were compared to those obtained in our two previous studies between 1997 – 2000 and 2001 – 2004.

Results: The resistance rates of 110 *H.pylori* isolates to clarithromycin, amoxicillin and furazolidone were 7.3%, 7.3%, and 4.5%, respectively. Among 160 *H.pylori* isolates, 55.6% exhibited resistance to metronidazole and 38.1% to tetracycline.

Discussion: Compared to our two previous studies, the resistance rates of *H.pylori* isolates to current antimicrobials has changed over time. The change in resistance rates of clarithromycin, amoxicillin and furazolidone was not statistically significant. However, resistance to metronidazole and tetracycline showed a considerable increase from 33 – 36.3% to 55.6% and 0 – 0.7% to 38.1%, respectively. Emergence of resistance due to the intensive use of antibiotics has become a global public health problem. It appears that plasmid-carried genes are involved in the spread of resistance traits among bacteria. Results obtained in this study indicate that the increase in resistance rates of *H.pylori* isolates to metronidazole and tetracycline could be the indication of indiscriminate and frequent use of antibiotics in Iran.

Keywords: H.pylori - metronidazole - resistance - tetracycline,

Introduction

H.pylori, once acquired early in the life of humans, could develop a persistent infection in the stomach with mild to severe consequences, including

Authors' affiliations: ¹Microbiology Department, Faculty of Sciences, University of Tehran, Tehran, ²Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, ³Digestive Disease Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.

•Corresponding author and reprints: Farideh Siavoshi PhD, Microbiology Department, Faculty of Sciences, University of Tehran, Tehran, Iran. E-mail: Siavoshi@khayam.ut.ac.ir. Accepted for publication: 27 January 2010 chronic gastritis,¹ peptic ulcer,² low grade gastric mucosa–associated lymphoid tissue lymphoma,³ atrophic
gastritis and gastric adenocarcinoma.⁴,⁵ A large body
of evidence emphasizes the crucial role of antimicrobials in eradication of *H.pylori* and thereby reducing
the severity of gastric disease symptoms or complete
recovery of patients.⁶-९ Furthermore, eradication of *H.pylori* has been strongly advised in asymptomatic
first-degree relatives of cancer patients(¹0, ¹1) and in
those who had early gastric cancer resection.¹² However, treatment failure often occurs due to resistance
of *H.pylori* to current antimicrobials.¹³

Antimicrobials along with improved public knowledge of personal hygiene have played a crucial role in reducing the prevalence of *H.pylori* infection in developed populations. 14-16 However, in developing countries, particularly in regions with a high prevalence of H.pylori infection, ignorance of standard hygiene and indiscriminate use of antimicrobials in frequent and short-interval courses have led to the increment of bacterial resistance. 13,14 It is noteworthy that antimicrobials that are currently recruited for the eradication of H.pylori are commonly used for the treatment of a wide range of infections: metronidazole for parasiterelated diseases, 17 gynecological 18 and dental infections¹⁹; tetracycline: respiratory and bowel diseases, prophylaxis of traveler's diarrhea and cholera²⁰; clarithromycin: respiratory infection²¹; amoxicillin: streptococcal pharyngitis,22 urinary tract infection23; and furazolidone: giardiasis.24 Accordingly, emergence of resistant strains of *H.pylori* to the above mentioned antibiotics cannot be an unexpected phenomenon.

Bacterial resistance to antimicrobials can be an intrinsic property related to chromosomal genes, although it can also be acquired through mutation in the chromosomal genes or by acquisition of foreign genes carried on mobile genetic elements (horizontal gene transfer) or the combination of both. ^{25,26} It appears that *H.pylori*, while colonizing the stomach, could be affected by antimicrobials frequently used (selective pressure) for the eradication or killing of other pathogens. Although resistant strains that survive will serve as reservoirs of resistance genes.^{27,28} Normal microbiota in different sites of the human body could be similarly affected and the survivors could spread the resistance genes.^{27–30} It has been revealed that resistance genes occur frequently in the environment and can be spread by mobile genetic elements among bacterial populations.31 Horizontal gene transfer has been implicated in the transfer of resistant traits and in converting a bacterium to a multi-drug resistant pathogen.^{32,33}

To estimate the consequences of frequent use of antimicrobials in Iran, we examined the resistance rates of H.pylori isolates to currently used antimicrobials between 2005 and 2008. The results were compared to those from our previous studies (1997 – 2000 and 2001 – 2004).

Parts of this study were presented as posters at the 21st (2008) and 22nd (2009) European Helicobacter Study Group International workshops.

Materials and Methods

Patients and bacterial strains

Strains of *H.pylori* were isolated from 160 dyspeptic patients who were referred to the Endoscopy Unit at Shariati Hospital, Tehran, Iran. Patients consisted of 82 women whose ages were 16 – 75 years old (mean age: 43 years) and 78 men whose ages ranged from 21 – 90 years old (mean age: 48 years). Patients were classified according to endoscopic diagnosis into individuals with gastritis (124, 77.5 %), ulcers (32, 20%) and cancer (4, 2.5%: 2 esophageal cancer and 2 gastric cancer).

Antral biopsies with positive rapid urease tests were transported to the microbiology lab in semisolid (0.1% agar) normal saline. Selective medium containing brucella agar (Merck), 7% defibrinated sheep blood, vancomycin (5mg/L), trimethoprim (5mg/L), polymyxin B (50µg/L), and amphotericin B (4mg/L) was used for culturing the biopsies. Plates were incubated at 37°C under microaerobic conditions (CO₂ incubator; Heraeus, Germany). Cultures were examined after 3-5 days for observation of pinpoint (1-2 mm) glistening colonies. Bacterial strains were identified as *H.pylori* on the basis of Gram stain and spiral microscopic appearance as well as positive activities of urease, oxidase, and catalase.

Antimicrobial susceptibility test

Antimicrobial susceptibility test was performed using disk diffusion method (DDM). Recruited antibiotics included metronidazole, tetracycline, clarithromycin, amoxicillin, and furazolidone. One hundred and ten strains were recruited in the first step of the susceptibility tests. The frequency of bacterial resistance to metronidazole and tetracycline appeared to be remarkably higher than our previous studies. Therefore, in the second step in order to increase the accuracy of the metronidazole resistance rate, an additional 50 strains were recruited for susceptibility testing with metronidazole (32, 16, 8, and 4 µg/mL). These 50 strains were also tested with 2, 1, and 0.5 µg/mL of tetracycline. Susceptibility tests were repeated twice for the strains which exhibited resistance to metronidazole or tetracycline. Serial dilutions of recruited antibiotics were prepared as follows: metronidazole (32, 16, 8, and 4 μg/mL) in dimethyl sulfoxide (DMSO; Merck), clarithromycin (2, 1, 0.5, and 0.25 μg/mL) in

ethanol (Merck), amoxicillin (1 μ g/mL) in DMSO, tetracycline (2, 1 and, 0.5 μ g/mL) in DMSO, and furazolidone (2, 1, and 0.5 μ g/mL) in N, N-dimethyl formamide (Merck).

Bacterial suspensions with the turbidity of Mac-Farland standard No.2 (equivalent to 6×108cell/mL) were prepared in normal saline. Non-selective blood agar plates were surface inoculated with 100 µL of each bacterial suspension. Bent glass rods were used for the even spreading of bacterial suspensions. Plates were allowed to dry at room temperature for about 10 minutes. Sterile blank disks were deposited on the surface of inoculated plates. A 10 µL volume of each antibiotic dilution was introduced into a blank disk. Control plates included those growth positive bacterial cultures with blank disks impregnated with 10 µL of the antibiotic solvents. Plates were incubated as mentioned earlier and examined after 3-5 days. The inhibition zone diameters (IZDs) were recorded and MICs were determined. *H.pylori* isolates with IZDs of \geq 20 mm for metronidazole, clarithromycin, amoxicillin, and tetracycline, and ≥13 mm for furazolidone were considered susceptible. MICs were determined as 8 µg/mL for metronidazole (160 isolates), 2 µg/mL for clarithromycin (110 isolates), 1 µg/mL for amoxicillin (110 isolates), 0.5 and 2 µg/mL for tetracycline (160 and 50 isolates, respectively), and 0.5 µg/mL for furazolidone (110 isolates).

Statistical analysis

SPSS software, version 13 was used for statistical analysis. The statistical tests applied were Student's *t*-test and Chi-square test. Tests performed were two tailed, and *P*<0.05 was considered as significant.

Results

Resistance rates of 110 *H.pylori* isolates to clarithromycin, amoxicillin, and furazolidone were 7.3%, 7.3% and 4.5%, respectively (Figure 1). Chi-square test showed no significant difference (*P*>0.05) between the resistance rates of these antimicrobials in *H.pylori* isolates from 54 men and 56 women with different age or disease status (Table 1).

Among 160 *H.pylori* isolates, 89 (55.6%) and 61 (38.1%) were resistant to metronidazole and tetracycline (MIC $0.5 \mu g/mL$), respectively. Resistance rates of 50 isolates to tetracycline with MICs 1 and

2 μ g/mL were 17% and 10%, respectively (Figure 1). Out of 160 *H.pylori* isolates, 78 isolates were obtained from men and 82 isolates from women. Chi-square test revealed no significant difference (P>0.05) between the resistance rates of metronidazole and tetracycline in isolates from men and women. Furthermore no difference was found in the rates of antibiotic resistance among isolates from patients of different gender, age or disease status (P>0.05) (Table 2).

Resistance rates of all H.pylori isolates were determined at different dilutions of recruited antimicrobials. The highest rates of resistance were obtained at 4 µg/mL of metronidazole (67.4%), 0.5 µg/mL of tetracycline (38.1%), 0.25 – 0.5 µg/mL of clarithromycin (26%) and 0.25 µg/mL of furazolidone (12%) (Figure 1).

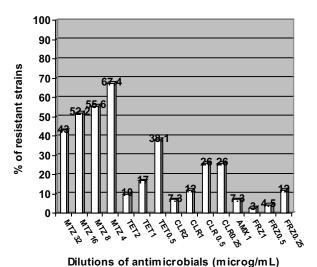


Figure 1. Resistance rates of *H.pylori* isolates at different dilutions of antimicrobials.

MTZ=metronidazole, TET=tetracycline, CLR=clarithromycin,

AMX=amoxicillin. FRZ=furazolidone

Discussion

Triple³⁴ and quadruple therapies³⁵ have been effective in killing *H.pylori* and improving dyspeptic diseases, particularly in patients at high risk of developing peptic ulcer, atrophic gastritis and gastric cancer.^{9,35} However, the low eradication rate of *H.pylori* in developing countries^{13,36} such as Iran,^{37,38} compared to western countries^{9,39} indicates the failure of antimicrobial therapies. Fingerprinting studies have revealed that recurrence could be due to recrudescence of *H.pylori*

Table 1. Resistance rates of 110 *H. pylori* isolates to clarithromycin, amoxicillin and furazolidone according to gender, age and disease status of patients.

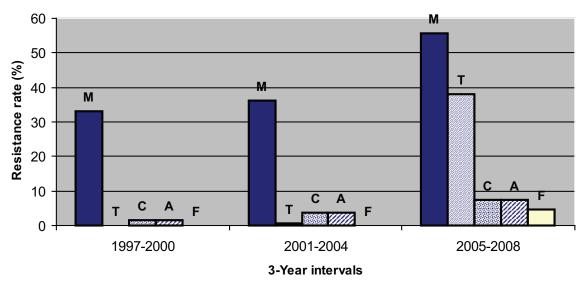
Status of patients	Clarithromycin resistance (%)	P-value	Amoxicillin resistance (%)	P-value	Furazolidone resistance (%)	<i>P</i> -value
Gender						
Male (<i>n</i> =54)	5 (9.3%)		4(7.4%)		3(5.6%)	
Female (<i>n</i> =56)	3 (5.4%)	0.431	4(7.1%)	0.9765	2(3.6%)	0.617
Age (years)						
15 – 40 (<i>n</i> =37)	1 (2.7%)		4(10.8%)		1(2.7%)	
41 – 65 (<i>n</i> =64)	6 (9.4%)		4(6.3%)		3 (4.7%)	
66 – 90 (<i>n</i> =9)	1 (11.1%)	0.414	0(0%)	0.474	1(11.1%)	0.522
Disease						
Gastritis (n=88)	4 (4.5%)		5(5.7%)		5(5.7%)	
Ulcer (<i>n</i> =20)	4 (20%)		3(15%)		0 (0%)	
Cancer (n=2)	0 (0%)	0.052	0 (0%)	0.520	0(0%)	0.323

Table 2. Resistance rates of 160 *H. pylori* isolates to metronidazole and tetracycline according to gender, age and disease status of patients.

Status of patients	Metronidazole resistance (%)	<i>P</i> -value	Tetracycline resistance (%)	P-value
Gender				
Male (<i>n</i> =78)	46 (59%)		31(39.7%)	
Female (n=82)	43 (52.4%)	0.406	30(36.6%)	0.681
Age (years)				
15 – 40 (<i>n</i> =53)	29 (54.7%)		19(35.8%)	
41 – 65 (<i>n</i> =91)	50 (54.9%)		33(36.3%)	
66 – 90 (<i>n</i> =16)	10 (62.5%)	0.843	9(56.3%)	0.439
Disease				
Gastritis (n=124)	69 (55.6%)		44(35.5%)	_
Ulcer (<i>n</i> =32)	19 (69.4%)	_	15(46.9%)	
Cancer (n=4)	1(25%)	0.427	2(50%)	0.290

(colonization of the same strain) rather than reinfection (colonization of a new strain) in up to 80% of cases. 36,40 Reports implicate metronidazole resistance as the main reason for chemotherapy failure. 41

Results of this study showed a significant increase (P=0.023) in the resistance rate of metronidazole (55.6%) compared to our two previous studies; 33%⁴² and 36.3%⁴³ (Table 3; Figure 2). Metronidazole was considerably effective on the susceptible strains which produced IZDs of 48 – 80 mm at MICs of 4 – 32 μ g/mL. However, 67.4% of isolates exhibited resistance at MIC of 4 μ g/mL which was higher than our previous result (47.7%).⁴³ Increasing the MIC to 32 μ g/mL resulted in a resistance rate of 43%, which was also


higher compared to 25.2% in the previous study.⁴³

Similar to reports from other countries such as China,⁴⁴ resistance to metronidazole was not related to age, gender and type of gastric disease. Reports from Costa Rica⁴⁵ and Mexico⁴⁶ also demonstrated no significant difference in metronidazole resistance rates of *H.pylori* isolates from men and women. However, in Brazil, the higher metronidazole resistance rate in *H.pylori* isolates from women was associated with the treatment of gynecological infections.⁴⁷ In Saudi Arabia⁴⁸ and China⁴⁴ metronidazole resistance rate showed a significant increase over time. High resistance to metronidazole has been reported from Nigeria,⁴⁹ Mexico,⁴⁶ and Hong Kong.⁵⁰ Intermediate

Table 3. Antimicrobial resistance patterns of Iranian *H.pylori* isolates at 3-year intervals.

Antimicrobial	1997 – 2000 (<i>n</i> =70)		2001 - (n=)		2005 – 2008 (n=110)*		
	MIC (μg/mL)	Rate of resistance	MIC (μg/mL)	Rate of resistance	MIC (μg/mL)	Rate of resistance	
Metronidazole	8	33%	8	36.3%	8	55.6%	
Tetracycline	0.25	0%	0.5	0.7%	0.5	38.1%	
Clarithromycin	0.25	1.4%	2	3.7%	2	7.3%	
Amoxicillin	0.25	1.4%	1	3.7%	1	7.3%	
Furazolidone	0.12	0%	0.5	0%	0.5	4.5%	

^{*} For metronidazole and tetracycline, an additional 50 strains were recruited for the susceptibility tests.

Figure 2. Change in resistance rates of *H.pylori* to current antimicrobials at 3-year intervals. M=metronidazole, T=tetracycline, C=clarithromycin, A=amoxicillin, F=furazolidone.

resistance rate of metronidazole has been reported from Italy⁵¹ and Bulgaria.⁵² The latter showed no significant change in resistance rate from 1996 – 2007 (Table 4). According to a considerable number of reports, increase in metronidazole resistance rates could be due to a widespread use of this antibiotic for the treatment of both *H.pylori*^{13,14,53} and non-*H.pylori* infections.^{18–24,54} Metronidazole has been currently prescribed against *H.pylori* in Iran^{55,56} and other countries such as the USA,⁵⁷ Sweden,⁵⁸ Germany,⁵⁹ China,⁴⁴ and Mexico.⁴⁶

Most reports^{13,14,44,60} on antimicrobial therapy of *H.pylori* propose that antibiotic overuse selects for

resistant strains (selective pressure). It appears that antimicrobials, including metronidazole, could eradicate the susceptible bacterial population, however, resistant survivors could establish and emerge as a resistant majority. The resistance trait could be spread horizontally by plasmids to other bacteria, including human pathogens. Emergence of a resistance phenotype is a short-term phenomenon and takes 4 – 5 years rather than a decade. The driving force would be the indiscriminate, short-interval and frequent use of antibiotics. 13,14,61

Tetracycline resistance rates also showed a considerable increase (38.1%) compared to our two previous

Table 4. Comparison of metronidazole resistance rates of H. pylori isolates from Iran with other countries.

Country	Number of isolates	Susceptibility test method	Turbidity (McFarland standard)	MIC (μg/ml)	Resistant strains (%)	Change over time			
Nigeria	32	DDM	_	_	100%	NSCh			
Mexico	195	E-test	3	8	80%	_			
Saudi Arabia	63	DDM	0.5	_	78.5%	32.2%→78.5% (1988-1996)			
China	153	ADM	1	8	77.8%	37.3%→77.8% (1997-2000)			
Iran	160	DDM	2	8	55.6%	33%→55.6% (1997-2008)			
Hong Kong	87	E-test ADM	1	8	49.4%	NSCh			
Costa Rica	94	E-test	2–3	8	40.4%	_			
Italy	225	E-test	4	8	29.4%				
Bulgaria	779	E-test ADM	2	8	26.9%	NSCh			
ADM=agar dil	ADM=agar dilution method; DDM=disk diffusion method; NSCh=no significant change.								

studies $(0\% - 0.7\%^{43}; P=0.000)$ (Table 3; Figure 2). Similar to other countries such as China44 and Saudi Arabia⁴⁸ age, gender, and type of disease did not affect the resistance rate. A resistance rate of 38.1% (MIC 0.5 µg/mL) could be reduced to 10% with a 4 fold increase in MIC (2µg/mL). It has been revealed that a 2-8 fold increase in MIC for eradication of a bacterial pathogen is the indication of the emergence of resistance. 62,63 Nigeria, 49 Costa Rica, 45 and China 44 are among the countries with high tetracycline resistance rates. However, low rates have been reported from Bulgaria, 52 Japan, 64 and Portugal 65 (Table 5). It appears that overuse due to low cost and over the counter purchase of the antibiotic have been implicated in the emergence of resistant strains. Tetracycline has been used for *H.pylori* eradication following failure of the firstline of treatment with amoxicillin+clarithromycin/ amoxicillin+metronidazole,66 or in order to reduce treatment costs. 48,67 Resistance to tetracycline could arise by de novo mutations in chromosomal genes as well as acquisition of the mutant 16S rRNA gene through horizontal transfer.⁶⁸ It has been revealed that the gene tet (O) which encodes tetracycline resistance in the Campylobacter spp. has been acquired from gram positive bacteria.30

Increase in tetracycline resistance has been reported in bacteria that have originated from animals used for food consumption such as *E.coli* (broiler chicken),⁶⁹ *Salmonella* (cattle),⁷⁰ and *Aeromonas* (fish).⁷¹ Tetra-

cycline is among the antibiotics currently used for preventive therapy and growth promotion of animals used as food sources.²⁰ Tetracycline has been frequently used in higher doses than standard for therapeutic purposes during outbreaks of diseases in aquaculturing of fish in order to prevent economic loss due to high mortality.⁷¹ Many reports indicate that long-term use of antibacterials selects for drug resistance and plasmids containing multiple resistance genes could be exchanged between bacterial pathogens of humans, fish, and other animals. 72 A large body of evidence indicates that antibiotic-resistant bacteria from poultry, pigs, and cattle can enter the food supply, reach the human digestive tract and transfer resistance genes to human commensal microbiota.^{25,73} In Europe, to prevent the spread of resistance genes to human pathogens, there are tight regulations for application of antibiotics in food production.⁷⁴ Accordingly, an increase in tetracycline resistance in certain countries might indicate the misuse and overuse of antibacterials.

Resistance rate of *H.pylori* isolates to clarithromycin (7.3%) did not show a significant change over time (*P*=0.105) when compared to our two previous studies; 1.4% and 3.7%⁴³ (Table 3; Figure 2). Similar to other reports,⁵¹ resistance rates were not different among various ages, gender, or disease groups. Reports demonstrate lower resistance rates to clarithromycin from Spain⁷⁵ and Costa Rica⁴⁵ and higher rates from Bulgaria,⁵² Italy,⁵¹ Mexico,⁴⁶ and Portugal⁶⁵ (Ta-

Table 5. Comparison of tetracycline resistance rates of *H. pylori* isolates from Iran with other countries.

Country	Number of isolates	Susceptibility test method	Turbidity (McFarland standard)	MIC (μg/mL)	Resistant strains (%)	Change over time		
Nigeria	32	DDM	_	_	93.5%	_		
Costa Rica	41	DDM	_	_	80.4%	_		
China	153	ADM	1	16	58.8%	_		
Iran	160	DDM	2	0.5	38.1%	0%-0 .7%→38.1% (1997→2008)		
Bulgaria	779	E-test ADM	1	4	5%	NSCh		
Japan	565	_	_	2	4.9%			
Portugal	473	E-test	_	8	0%	NSCh		
ADM =agar dilution method; DDM=disk diffusion method; NSCh=nNo significant change								

ble 6). Clarithromycin is not frequently prescribed in Iran and developing countries due to its high cost.³⁸ However, macrolide use in combination therapies against *H.pylori* has been increasing during recent years. This might select for stable macrolide-resistant H.pylori and indigenous microbiota.28 It has been demonstrated that clarithromycin-included therapies against *H.pylori* selected for resistant strains of Enterococci, the normal inhabitants of human colon and common causes of nosocomial infections, and Staphylococcus epidermidis, a member of the microbiota in human nostrils. The resistance was mediated by the plasmid-or transposon-carried erm $(B)^{28,76}$ and erm $(C)^{27}$ genes, respectively. A multi-drug resistance phenotype could often develop when an additional resistance gene joins the previously acquired genes, as reported in E.coli and Salmonella. 31

Resistance to amoxicillin was 7.3% with no significant change over time (Table 3; Figure 2) or correlation with a particular age, gender, or disease group. Resistance rates for amoxicillin have been reported that range from 0 – 71.9% in Portugal,⁶⁵ Bulgaria,⁵² Costa Rica,⁴⁵ Mexico,⁴⁶ Brazil,⁷⁷ and China⁴⁴ (Table 6). Amoxicillin resistance in *H.pylori* occurs with extremely low frequency (<1/10⁹)⁷⁸ and involves co-operative mutations. It appears that frequent use of amoxicillin (selective pressure) as well as horizontal gene transfer could play important roles in the emergence of resistance in *H.pylori*.⁷⁹ It is interesting that the rates of resistance to amoxicillin and clarithromycin are similar throughout our two previous^{42,43} and present studies (Tables 3 and 6).

H.pylori isolates exhibited a 4.5% resistance rate to furazolidone which did not show a significant change over

time (Table 3; Figure 2) or correlation with age, gender or disease status of patients. The resistance rate of furazolidone obtained in this study was an intermediate between Bulgaria (1.3%)⁵² and Brazil (13%)⁷⁷ (Table 6). The resistance rate to furazolidone was the lowest among the rates of metronidazole, tetracycline, clarithromycin, and amoxicillin. The low cost and high efficacy of furazolidone have made it a good substitute for metronidazole and tetracycline in quadruple therapy regimens for eradication of *H.pylori* in Iran.^{80,81} Application of furazolidone has been recommended in developing countries with a high prevalence of *H. pylori* and increasing rate of metronidazole resistance.⁶⁶ Furazolidone use has been recommended in the Latin America consensus conference.⁸²

Worldwide increase in the failure of antimicrobial therapies against *H.pylori* indicates an increase in the emergence of resistant strains. Results of this study show that a remarkable increase in the resistance rates of H.pylori isolates to metronidazole and tetracycline has occurred during recent years. In countries like Iran, the high prevalence of H.pylori in addition to frequent, short-interval and indiscriminate use of antimicrobials for both the eradication of H.pylori or treatment of non-*H.pylori* infections could lead to the emergence of resistant bacterial pathogens as well as commensal microbiota. Accordingly, the frequency of *H. pylori* resistance to current antibiotics should be monitored periodically to determine the most appropriate regimen for treatment of gastric infections. The increase in *H.pylori* resistance rates to antimicrobials should be considered seriously as an indicator of misuse and overuse of antibiotics which ultimately limit their efficacy for the future generations.

Table 6. Comparison of clarithromycin, amoxicillin and furazolidone resistance rates of *H.pylori* isolates from Iran with other countries.

	Iran (1997–000)	Iran (2001–004)	Iran (2005–2008)	Bulgaria	China	Spain	Italy	Mexico	Brazil	Costa Rica	Portugal
Clarithromycin	1.4%	3.7%	7.3%	17.9%	_	3.5%	10%	24%	16%	5.3%	19%
Amoxicillin	1.4%	3.7%	7.3%	0.9%	71.9%	_	_	18.5%	38%	5.3%	0%
Furazolidone	0%	0%	4.5%	1.3%	_		_	_	13%	_	

References:

- Ernst PB, Crowe SE, Reyes VE. How does *Helico-bacter pylori* cause mucosal damage? The inflammatory response. *Gastroenterology*. 1997; 113(suppl 6): S35 S42; discussion S50.
- 2. Peura DA. *Helicobacter pylori* and ulcerogenesis. *Am J Med.* 1996; **100:** 19S 25S; discussion S-6S.
- 3. Parsonnet J, Hansen S, Rodriguez L, Gelb AB, Warnke RA, Jellum E, et al. Helicobacter pylori infection and gastric lymphoma. *N Engl J Med.* 1994; **330**: 1267 1271.
- Parsonnet J, Friedman GD, Vandersteen DP, Chang Y, Vogelman JH, Orentreich N, et al. *Helicobacter* pylori infection and the risk of gastric carcinoma. N Engl J Med. 1991; 325: 1127 – 1131.
- 5. Alexander GA, Brawley OW. Association of *Helico-bacter pylori* infection with gastric cancer. *Mil Med.* 2000; **165:** 21 27.
- Neubauer A, Thiede C, Morgner A, Alpen B, Ritter M, Neubauer B, et al. Cure of *Helicobacter pylori* infection and duration of remission of low-grade gastric mucosa-associated lymphoid tissue lymphoma. *J Natl Cancer Inst.* 1997; 89: 1350 – 1355.
- 7. Valle J, Kekki M, Sipponen P, Ihamaki T, Siurala M. Long-term course and consequences of *Helicobacter pylori* gastritis. Results of a 32-year follow-up study. *Scand J Gastroenterol*. 1996; **31:** 546 550.
- 8. Malfertheiner P, Megraud F, O'Morain C, Hungin AP, Jones R, Axon A, et al. Current concepts in the management of *Helicobacter pylori* infection--the Maastricht 2-2000 Consensus Report. *Aliment Pharmacol Ther*. 2002; **16:** 167 180.
- Soll AH. Consensus conference. Medical treatment of peptic ulcer disease. Practice guidelines. Practice Parameters Committee of the American College of Gastroenterology. *JAMA*. 1996; 275: 622 – 629.
- Parsonnet J, Harris RA, Hack HM, Owens DK. Modelling cost-effectiveness of *Helicobacter pylori* screening to prevent gastric cancer: a mandate for clinical trials. *Lancet*. 1996; 348: 150 – 154.
- El-Omar EM, Oien K, Murray LS, El-Nujumi A, Wirz A, Gillen D, et al. Increased prevalence of precancerous changes in relatives of gastric cancer

- patients: critical role of *H.pylori*. *Gastroenterology*. 2000; **118**: 22 30.
- Uemura N, Okamoto S. Effect of Helicobacter pylori eradication on subsequent development of cancer after endoscopic resection of early gastric cancer in Japan. Gastroenterol Clin North Am. 2000 Dec; 29: 819 827.
- Megraud F. Resistance of *Helicobacter pylori* to antibiotics. *Aliment Pharmacol Ther*. 1997; 11 (suppl 1): 43 53.
- Aguilar GR, Ayala G, Fierros-Zarate G. Helicobacter pylori: recent advances in the study of its pathogenicity and prevention. Salud Publica Mex. 2001; 43: 237 – 247.
- 15. Banatvala N, Mayo K, Megraud F, Jennings R, Deeks JJ, Feldman RA. The cohort effect and *Helicobacter pylori*. *J Infect Dis*. 1993; **168**: 219 221.
- 16. Parsonnet J. *Helicobacter pylori*: the size of the problem. *Gut*. 1998; **43 (suppl 1):** S6 S9.
- 17. Zaat JO, Mank TG, Assendelft WJ. A systematic review on the treatment of giardiasis. *Trop Med Int Health*. 1997; **2:** 63 82.
- 18. Schwebke JR. Metronidazole: utilization in the obstetric and gynecologic patient. *Sex Transm Dis*. 1995; **22:** 370 376.
- 19. Mitchell DA. Metronidazole: its use in clinical dentistry. *J Clin Periodontol*. 1984; **11:** 145 158.
- 20. Chopra I, Roberts M. Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. *Microbiol Mol Biol Rev.* 2001; **65:** 232 260.
- Yanagihara K, Tomono K, Imamura Y, Kaneko Y, Kuroki M, Sawai T, et al. Effect of clarithromycin on chronic respiratory infection caused by Pseudomonas aeruginosa with biofilm formation in an experimental murine model. *J Antimicrob Chemother*. 2002; 49: 867 – 870.
- 22. Feder HM Jr., Gerber MA, Randolph MF, Stelmach PS, Kaplan EL. Once-daily therapy for streptococcal pharyngitis with amoxicillin. *Pediatrics*. 1999; **103**: 47 51.
- 23. Turck M, Handsfield HH, Holmes KK. Amoxicillin in the treatment of urinary tract infections. *J Infect Dis.* 1974; **129 (suppl):** S248 S249.
- 24. Webster BH. Furazolidone in the treatment of giar-

- diasis. Am J Dig Dis. 1960; 5: 618 622.
- Dzidic S, Suskovic J, Kos B. Antibiotic resistance mechanisms in bacteria: biochemical and genetic spects. Food technol Biotechnol. 2008; 46: 11 – 21.
- Aminov RI, Mackie RI. Evolution and ecology of antibiotic resistance genes. *FEMS Microbiol Lett.* 2007;
 271: 147 161.
- Sjolund M, Tano E, Blaser MJ, Andersson DI, Engstrand L. Persistence of resistant *Staphylococcus epidermidis* after single course of clarithromycin. *Emerg Infect Dis.* 2005; 11: 1389 – 1393.
- Sjolund M, Wreiber K, Andersson DI, Blaser MJ, Engstrand L. Long-term persistence of resistant *Enterococcus* species after antibiotics to eradicate *Helicobacter pylori*. *Ann Intern Med*. 2003; 139: 483

 – 487.
- 29. Sullivan A, Edlund C, Nord CE. Effect of antimicrobial agents on the ecological balance of human microflora. *Lancet Infect Dis.* 2001; **1:** 101 114.
- Courvalin P. Transfer of antibiotic resistance genes between gram-positive and gram-negative bacteria. *Antimicrob Agents Chemother*. 1994; 38: 1447 – 1451.
- Vladimír B. Mechanisms of Action of Antibiotics and Mycotoxins. In: Vladimír B, ed. *Bioactive Sec*ondary Metabolites of Microorganisms. Amsterdam, The Netherlands: Elsevier Science; 1994: 297 – 375.
- 32. Dzidic S, Bedekovic V. Horizontal gene transferemerging multidrug resistance in hospital bacteria. *Acta Pharmacol Sin.* 2003; **24:** 519 526.
- 33. Summers AO. Genetic linkage and horizontal gene transfer, the roots of the antibiotic multi-resistance problem. *Anim Biotechnol*. 2006; **17:** 125 135.
- 34. Paoluzi P, Iacopini F, Crispino P, Nardi F, Bella A, Rivera M, et al. 2-week triple therapy for *Helicobacter pylori* infection is better than 1-week in clinical practice: a large prospective single-center randomized study. *Helicobacter*. 2006; **11:** 562 568.
- 35. Malfertheiner P, Megraud F, O'Morain C, Bazzoli F, El-Omar E, Graham D, et al. Current concepts in the management of *Helicobacter pylori* infection: the Maastricht III Consensus Report. *Gut*. 2007; **56:** 772 781.
- 36. Gisbert JP. The recurrence of *Helicobacter pylori* infection: incidence and variables influencing it. A critical review. *Am J Gastroenterol*. 2005; **100**: 2083 2099.
- 37. Malekzadeh R, Merat S, Derakhshan MH, Siavoshi F, Yazdanbod A, Mikaeli J, et al. Low *Helicobacter pylori* eradication rates with 4- and 7-day regimens in an Iranian population. *J Gastroenterol Hepatol*. 2003; **18:** 13 17.
- 38. Malekzadeh R, Mohamadnejad M, Siavoshi F, Massarrat S. Treatment of *Helicobacter pylori* Iinfection

- in Iran: low efficacy of recommended western regimens. *Arch Iran Med.* 2004; **7:** 1 8.
- 39. Malfertheiner P, Bayerdorffer E, Diete U, Gil J, Lind T, Misiuna P, et al. The GU-MACH study: the effect of 1-week omeprazole triple therapy on *Helicobacter pylori* infection in patients with gastric ulcer. *Aliment Pharmacol Ther*. 1999; **13:** 703 712.
- 40. Peitz U, Hackelsberger A, Malfertheiner P. A practical approach to patients with refractory *Helicobacter pylori* infection, or who are re-infected after standard therapy. *Drugs*. 1999; **57**: 905 920.
- Megraud F. *H.pylori* antibiotic resistance: prevalence, importance, and advances in testing. *Gut.* 2004; 53: 1374 – 1384.
- 42. Safaralizadeh R, Siavoshi F, Malekzadeh R, Akbari MR, Derakhshan MH, Sohrabi MR, et al. Antimicrobial effectiveness of furazolidone against metronidazole-resistant strains of *Helicobacter pylori*. *East Mediterr Health J*. 2006; **12**: 286 293.
- 43. Siavoshi F, Safari F, Doratotaj D, Khatami GR, Fallahi GH, Mirnaseri MM. Antimicrobial resistance of *Helicobacter pylori* isolates from Iranian adults and children. *Arch Iran Med.* 2006; **9:** 308 314.
- Wu H, Shi XD, Wang HT, Liu JX. Resistance of *Helicobacter pylori* to metronidazole, tetracycline, and amoxycillin. *J Antimicrob Chemother*. 2000; 46: 121 123.
- 45. Lang L, Garcia F. Comparison of E-test and disk diffusion assay to evaluate resistance of *Helicobacter pylori* isolates to amoxicillin, clarithromycin, metronidazole and tetracycline in Costa Rica. *Int J Antimicrob Agents*, 2004; **24:** 572 577.
- Torres J, Camorlinga-Ponce M, Perez-Perez G, Madrazo-De la Garza A, Dehesa M, Gonzalez-Valencia G, et al. Increasing multidrug resistance in *He-licobacter pylori* strains isolated from children and adults in Mexico. *J Clin Microbiol*. 2001; 39: 2677 - 2680.
- 47. Mendonca S, Ecclissato C, Sartori MS, Godoy AP, Guerzoni RA, Degger M, et al. Prevalence of *Helicobacter pylori* resistance to metronidazole, clarithromycin, amoxicillin, tetracycline, and furazolidone in Brazil. *Helicobacter*. 2000; **5:** 79 83.
- 48. Al-Qurashi AR, El-Morsy F, Al-Quorain AA. Evolution of metronidazole and tetracycline susceptibility pattern in *Helicobacter pylori* at a hospital in Saudi Arabia. *Int J Antimicrob Agents*. 2001; **17:** 233 236.
- Aboderin OA, Abdu AR, Odetoyin B, Okeke IN, Lawal OO, Ndububa DA, et al. Antibiotic resistance of Helicobacter pylori from patients in Ile-Ife, Southwest, Nigeria. Afr Health Sci. 2007; 7: 143 – 147.
- Wang WH, Wong BC, Mukhopadhyay AK, Berg DE, Cho CH, Lai KC, et al. High prevalence of *Helico-bacter pylori* infection with dual resistance to metro-

- nidazole and clarithromycin in Hong Kong. *Aliment Pharmacol Ther.* 2000; **14:** 901 910.
- Zullo A, Perna F, Hassan C, Ricci C, Saracino I, Morini S, et al. Primary antibiotic resistance in *Helicobacter pylori* strains isolated in northern and central Italy. *Aliment Pharmacol Ther*. 2007; 25: 1429 – 1434.
- Boyanova L, Gergova G, Nikolov R, Davidkov L, Kamburov V, Jelev C, et al. Prevalence and evolution of *Helicobacter pylori* resistance to 6 antibacterial agents over 12 years and correlation between susceptibility testing methods. *Diagn Microbiol Infect Dis*. 2008; 60: 409 – 415.
- 53. Koletzko S, Richy F, Bontems P, Crone J, Kalach N, Monteiro ML, et al. Prospective multicentre study on antibiotic resistance of *Helicobacter pylori* strains obtained from children living in Europe. *Gut.* 2006; **55:** 1711 1716.
- 54. Glenwright HD, Sidaway DA. The use of metronidazole in the treatment of acute ulcerative gingivitis. *Br Dent J.* 1966; **121:** 174 177.
- 55. Roghani HS, Massarrat S, Pahlewanzadeh MR, Dashti M. Effect of two different doses of metronidazole and tetracycline in bismuth triple therapy on eradication of *Helicobacter pylori* and its resistant strains. *Eur J Gastroenterol Hepatol*. 1999; 11: 709 712.
- 56. Kaviani MJ, Malekzadeh R, Vahedi H, Sotoudeh M, Kamalian N, Amini M, et al. Various durations of a standard regimen (amoxycillin, metronidazole, colloidal bismuth sub-citrate for 2 weeks or with additional ranitidine for 1 or 2 weeks) on eradication of Helicobacter pylori in Iranian peptic ulcer patients. A randomized controlled trial. Eur J Gastroenterol Hepatol. 2001; 13: 915 919.
- 57. Osato MS, Reddy R, Graham DY. Metronidazole and clarithromycin resistance amongst *Helicobacter pylori* isolates from a large metropolitan hospital in the United States. *Int J Antimicrob Agents*. 1999; **12**: 341 347.
- Wreiber K, Olsson-Liljequist B, Engstrand L. Development of resistant *Helicobacter pylori* in Sweden.
 Tendency toward increasing resistance to clarithromycin. *Lakartidningen*. 1999; 96: 582 584.
- Wolle K, Nilius M, Leodolter A, Muller WA, Malfertheiner P, Konig W. Prevalence of *Helicobacter pylori* resistance to several antimicrobial agents in a region of Germany. *Eur J Clin Microbiol Infect Dis.* 1998; 17: 519 521.
- 60. Sharara AI, Chedid M, Araj GF, Barada KA, Mourad FH. Prevalence of *Helicobacter pylori* resistance to metronidazole, clarithromycin, amoxycillin, and tetracycline in Lebanon. *Int J Antimicrob Agents*. 2002; **19:** 155 158.

- 61. Bennett PM. Plasmid encoded antibiotic resistance: acquisition and transfer of antibiotic resistance genes in bacteria. *Br J Pharmacol*. 2008; **153 (suppl 1):** S347 S357.
- 62. Piddock LJ. Clinically relevant chromosomally encoded multidrug resistance efflux pumps in bacteria. *Clin Microbiol Rev.* 2006; **19:** 382 402.
- 63. Poole K. Efflux-mediated multiresistance in Gramnegative bacteria. *Clin Microbiol Infect*. 2004; **10**: 12 26.
- Kwon DH, Kim JJ, Lee M, Yamaoka Y, Kato M, Osato MS, et al. Isolation and characterization of tetracycline-resistant clinical isolates of *Helicobacter* pylori. Antimicrob Agents Chemother. 2000; 44: 3203 – 3205.
- Cabrita J, Oleastro M, Matos R, Manhente A, Cabral J, Barros R, et al. Features and trends in *Helicobacter pylori* antibiotic resistance in Lisbon area, Portugal (1990 1999). *J Antimicrob Chemother*. 2000; 46: 1029 1031.
- Megraud F, Marshall BJ. How to treat *Helicobacter* pylori. First-line, second-line, and future therapies.
 Gastroenterol Clin North Am. 2000; 29: 759 773, vii.
- 67. Goodwin CS. Antimicrobial treatment of *Helicobacter pylori* infection. *Clin Infect Dis.* 1997; **25:** 1023 –1026.
- 68. Ribeiro ML, Gerrits MM, Benvengo YH, Berning M, Godoy AP, Kuipers EJ, et al. Detection of high-level tetracycline resistance in clinical isolates of *Helicobacter pylori* using PCR-RFLP. *FEMS Immunol Med Microbiol*. 2004; **40**: 57 61.
- Smith JL, Drum DJ, Dai Y, Kim JM, Sanchez S, Maurer JJ, et al. Impact of antimicrobial usage on antimicrobial resistance in commensal *Escherichia* coli strains colonizing broiler chickens. *Appl Environ Microbiol*. 2007; 73: 1404 – 1414.
- Dechet AM, Scallan E, Gensheimer K, Hoekstra R, Gunderman-King J, Lockett J, et al. Outbreak of multidrug-resistant *Salmonella enterica* serotype *Typhimurium definitive* Type 104 infection linked to commercial ground beef, northeastern United States, 2003 2004. *Clin Infect Dis.* 2006; 42: 747 752.
- 71. Jacobs L, Chenia HY. Characterization of integrons and tetracycline resistance determinants in *Aeromonas* spp. isolated from South African aquaculture systems. *Int J Food Microbiol*. 2007; **114:** 295 306.
- 72. Kruse H, Sorum H. Transfer of multiple drug resistance plasmids between bacteria of diverse origins in natural microenvironments. *Appl Environ Microbiol*. 1994; **60:** 4015 4021.
- 73. Wegener HC. Antibiotics in animal feed and their role in resistance development. *Curr Opin Microbiol*. 2003; **6:** 439 445.

- 74. Butaye P, Devriese LA, Haesebrouck F. Antimicrobial growth promoters used in animal feed: effects of less well known antibiotics on gram-positive bacteria. *Clin Microbiol Rev.* 2003; **16:** 175 188.
- Lopez-Brea M, Domingo D, Sanchez I, Alarcon T. Evolution of resistance to metronidazole and clarithromycin in *Helicobacter pylori* clinical isolates from Spain. *J Antimicrob Chemother*. 1997; 40: 279 – 281.
- 76. Murray BE. The life and times of the *Enterococcus*. *Clin Microbiol Rev*. 1990; **3:** 46 65.
- 77. Godoy AP, Ribeiro ML, Benvengo YH, Vitiello L, Miranda Mde C, Mendonca S, et al. Analysis of antimicrobial susceptibility and virulence factors in *Helicobacter pylori* clinical isolates. *BMC Gastroenterol*. 2003; **3:** 20.
- 78. Wang G, Wilson TJ, Jiang Q, Taylor DE. Spontaneous mutations that confer antibiotic resistance in *Helicobacter pylori*. *Antimicrob Agents Chemother*. 2001; **45**: 727 733.
- 79. van Zwet AA, Vandenbroucke-Grauls CM, Thijs JC,

- van der Wouden EJ, Gerrits MM, Kusters JG. Stable amoxicillin resistance in *Helicobacter pylori*. *Lancet*. 1998; **352**: 1595.
- Khatibian M, Ajvadi Y, Nasseri-Moghaddam S, Ebrahimi-Dariani N, Vahedi H, Zendehdel N, et al. Furazolidone-based, metronidazole-based, or a combination regimen for eradication of *Helicobacter pylori* in peptic ulcer disease. *Arch Iran Med.* 2007; 10: 161 – 167.
- 81. Malekzadeh R, Ansari R, Vahedi H, Siavoshi F, Alizadeh BZ, Eshraghian MR, et al. Furazolidone versus metronidazole in quadruple therapy for eradication of *Helicobacter pylori* in duodenal ulcer disease. *Aliment Pharmacol Ther*. 2000; **14**: 299 303.
- 82. Coelho LG, Leon-Barua R, Quigley EM. Latin-American Consensus Conference on *Helicobacter pylori* infection. Latin-American National Gastroenterological Societies affiliated with the Inter-American Association of Gastroenterology (AIGE). *Am J Gastroenterol*. 2000; **95:** 2688 2691.

Online Submission

Submit your manuscripts online on the Archives of Iranian Medicine website:

www.aimjournal.ir

Please register only once for all your manuscripts