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Abstract
In all organisms, transfer RNA (tRNA) molecules are required to undergo post-transcriptional modifications at different levels in 
order to convert into mature tRNAs. These modifications are critical for many aspects of tRNA function and structure, such as 
translational efficiency, flexibility, codon–anticodon interaction, stability, and fidelity. Up to now, over 100 modified nucleosides 
have been identified in tRNAs from all domains of life. Post-transcriptional modifications include different chemical processes 
such as methylation, deamination, or acetylation, with methylation reactions as the most common. tRNA methyltransferases are a 
family of enzymes involved in the post-transcriptional methylation of tRNA bases. Recent studies have reported different human 
diseases resulting from defects in tRNA methyltransferase activity, including cancer, diabetes and neurological disorders such 
as intellectual disability (ID). In this article, we focused on biological function and characterization of tRNA methyltransferases 
associated with ID in order to explain how functional disruption of tRNA methyltransferases could lead to ID phenotype.
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Introduction
Transfer RNAs (tRNAs) are small molecules (70–100 
nucleotides) that play a central role in protein translation, 
and are highly abundant in the cell (up to 5% of the total 
RNA).1-3 In all organisms, during their biogenesis and 
maturation, primary tRNA transcripts are processed by a 
sequence of post-transcriptional modifications which are 
required for their proper function as translation adaptors. 
Post-transcriptional modifications regulate the structure 
and function of tRNAs, and influence all aspects of tRNA 
biology.2-5 The nature of base modifications is very variable 
among different tRNAs, but some of them are ancestral and 
have remained conserved during evolution throughout the 
tree of life.

The position of specific base modifications in the tRNA 
body is not fixed,4,6,7 and the biochemical pathways that 
generate them also show large functional variations among 
species.1,4,6 In general, however, the anticodon loop is the 
domain of tRNA that accumulates greater modification 
diversity, in particular, at the wobble position where modified 
bases directly affect codon recognition and modulate codon–
anticodon interactions.3,7-9

More than 100 chemically modified nucleosides have been 
reported in different residues of tRNA molecules.3,4,7,10-13 
Among numerous types of chemical modifications, 
methylation reactions catalyzed by methyltransferases 

are relatively more frequent than others.14-16 To date, 
more than 30 methylated nucleotides have been found 
at different positions in tRNAs in all organisms, while 
the enzymes responsible for several of them have not yet 
been described.13,15,16 The functional importance of tRNA 
methyltransferases (Trms) is illustrated by the fact that 
any changes and perturbations in methylation patterns are 
linked to defects in tRNA structure and function, with 
observable effects on cell development, proliferation, and 
metabolism. Accordingly, the functional disruption of Trms 
is associated with different human diseases including cancer, 
immunodeficiencies, neurodegeneration, cardiopathies, and 
mitochondria-related conditions.8,12,13,15-20

Several reports have linked defects in tRNA 
methyltransferase activity to various types of neurological 
disorders such as intellectual disability (ID).12,17,18 Here 
we would like to review the current understanding of the 
role that different tRNA methyltransferases play in the 
development of human neurological disorders.

Biological Function of tRNA Methyltransferases and 
Their Effects on Neural System
Transfer RNA methyltransferases are a diverse group of tRNA 
modification enzymes involved in methylation. Methylation 
is one of the most important processes for regulation 
of tRNA functionality and it is known as a marker of its 
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maturation. In addition, it is involved in formation of the 
correct tRNA structure and its stability, and the prevention 
of base-pairing errors during translation.13,16,20-23 Other 
activities for methylation reactions that have been reported 
in recent studies include controlling tRNA transportation 
from cytoplasm to mitochondria, tRNA localization and 
their quality control system.15,16,24,25 

Methylation can happen at any canonical bases (A, C, G, 
and U) of tRNA, but the sites of methylation are conserved 
during the evolution of living organisms. Different sites have 
been detected for methylation including C5 of prymidine, 
endocyclic or exocyclic nitrogens of purines and pyrimidines 
and the 2’-oxygen of ribose.16,20-23 The biochemical structure 
of some common methylated nucleosides has been illustrated 
in Figure 1. 

Diversity in chemical reactions among Trms is related 
to the cofactor used during methylation process. tRNA 
methyltransferases may use S-adenosylmethionine (SAM/
AdoMet) or 5,10-methylenetetrahydrofolate as cofactor 
and methyl donor groups for methylation. But, based 
on their consumption, almost all of them belong to the 
SAM superfamily, and exclusively employ AdoMet as a 
universal donor.15,16,26,27 Five structural classes have been 
identified for AdoMet dependent enzymes, which tRNA 
methyltranferases based on their catalytic domain, are 
categorized in two classes (Class I and IV). Class I and IV are 
detected in the presence of Rossmann-fold domain and deep 
trefoil knot structure, respectively.15,16 Regardless of methyl 
group donors, in their absence or depletion, methylation 
reactions will be incomplete and other tRNA modifications 
will be disrupted.15-17,23 

It has recently been reported that some Trms catalyze 
methylation reactions in various residues of tRNAs while 
one nucleotide can be methylated by different Trms. 
For more details about methylated nucleosides and their 

corresponding tRNA methyltransferases, some good reviews 
are available.1,13,15,16,28,29

The modification especially methylation plays a crucial 
role in protein synthesis, so any deficiency can probably 
cause a genetic disorder. By improving the identification 
of tRNA methyltransferase enzymes, different human 
genetic diseases such as mitochondrial defects, metabolic 
dysfunctions, diabetes, cancers and neurodegenerative and 
neurological diseases have been detected resulting from 
mutations and disruptions in these enzymes.16,17,20,30-32 In 
most cases, neurological disorders due to Trms defects are 
associated with ID.12,17,20 

Table 1 summarizes the genes responsible for tRNA 
methyltransferases, the position of methylated nucleosides 
within tRNA and their related neurodevelopmental 
dysfunction.

Different deleterious changes and mutations in tRNA 
methyltransferases can impact on the neural system, because 
the human brain is very sensitive to tRNA methyltransferase 
deficiency and oxidative stress resulting from Trms 
disruption.1,3,12,13,17,18,33-35

Intellectual Disability and Trms Genes
ID, as a deficiency in the development of cognitive and 
adaptive abilities, is one of the most common heterogeneous 
disorders with a prevalence of approximately 1%–3% 
in general population.61-64 The etiology of ID varies from 
environmental factors to single gene defects. It is estimated 
that genetic causes are involved in 25%–50% of ID cases.63-66 
Among genes known to be responsible for ID, some of them 
encode tRNA methyltransferase enzymes and are described 
in this section.

The tRNA methyltransferase 10A (TRMT10A) or human 
RNA (guanine-9) methyltransferase domain containing 
2 (HRG9MTD2) encodes a protein that modifies a single 

Figure 1. Some Methylated Nucleosides in tRNAs. Methylation sites are colored in red.



 Arch Iran Med, Volume 21, Issue 10, October 2018                                                        480

Abedini et al 

guanosine residue at position 9 of numerous tRNAs by 
methylation (Figure 2). This modification is highly conserved 
and is catalyzed by a SAM-dependent methyltransferase.36,67 
Northern blot analysis has shown that TRMT10A is 
expressed in all tissues, but the highest expression is detected 
in brain and pancreatic islets.36

Three different mutations have been identified for 
TRMT10A which are associated with ID, primary 
microcephaly, epilepsy, short stature and early-onset 
diabetes.36-38 TRMT10A protein can have an effect on the 
development of neural progenitor cells, and may also play 
a role in the neural differentiation process in the cortical 
marginal zone and cerebellum, so any defects in this gene can 
have an influence on brain size and intellectual efficiency.36 
In addition to these effects, the loss of activity of TRMT10A 

Figure 2. Schematic Representation of the Secondary Structure of 
tRNA and Methyltransferases Discussed in This Article. The color 
inside the circle shows the different phenotype identified with 
Trms deficiency. 

Table 1. tRNA Methyltransferases and Their Associated Neurological Disorders

Methyltransferases/
Gene

tRNA Modification and Residues 
Affected

Neurological Disorders Patients# Ethnicity References

TRMT10A 
(HRG9MTD2)

m1G9; Several tRNAs
ID, microcephaly, developmental delay, 
epilepsy

9
Moroccan, Jewish, 
Uzbekistani, Israeli 
Muslim, Caucasian

36-38

TRMT1 m2
2G26 (m2G26); several tRNAs Cognitive disorders and ID 9 Iranian 39, 40

FTSJ1
Cm 32,Cm34, Gm34, ncm5Um 
34; tRNALeu, tRNATrp, tRNAPhe

Non-syndromic X-linked ID 18
Belgian, Japanese, 
Australian

41-45

ELP1(IKBKAP), ELP2, 
ELP3, ELP4 (Elongator 
Complex)

mcm5s2U34, ncm5U 34, and 
derivatives; several tRNAs

ID, Familial dysautonomia, atypical 
rolandic epilepsy, amyotrophic lateral 
sclerosis

Many
Ashkenazi Jewish, Iranian, 
Caucasian, Belgian, USA, 
UK

39, 46-53

WDR4 m7G46, several tRNAs
Down’s syndrome, brain malformation, 
microcephaly, encephalopathy, seizures

3 Saudi Arabia 54, 55

NSUN2
m5C34; tRNALeu

m5C48, m5C49, m5C50; several 
tRNAs

Autosomal-recessive ID, Microcephaly, 
Dubowitz-like syndrome

18
Iranian, Pakistani, 
Lebanese, German, 
Emirati

56-60

Abbreviations: m1G, N1-mehtylguanosine; m2
2G, N2,N2-dimethylguanosine; Cm, 2’-O-methylcytidine; Gm, 2’-O-methylguanosine ; ncm5Um, 5-carbamoylmethy 

l-2’-O-methyluridine; mcm5s2U, 5-methoxycarbonylmethyl-2-thiouridine; ncm5U, 5-carbamoylmethyluridine; m7G, 7-methylguanosine; m5C, 5-methylcytosine; 
Leu, leucine; Trp, tryptophan; Phe, phenylalanine; ID, intellectual disability.

may lead to a dramatic acceleration of β cell apoptosis.36,37

In vitro methyltransferase assay has demonstrated that 
the mutant enzyme shows a dramatic reduction (at least 
104-fold) in methylation activity and the inability to bind 
the SAM group.36,38 It also seems that perturbations in 
methylation at position 9 can result in structural defects and 
protein instability by a deficiency in folding.38

Mutations in another Trms gene, TRMT1 or tRNA 
methyltransferase 1, is known to be a genetic cause of 
autosomal recessive ID.39,40 TRMT1 encodes an enzyme 
that dimethylates a specific guanosine (m2

2G) at position 
26 and modifies it to N2,N2-dimethylguanosine in several 
tRNAs by using the AdoMet methyl group (Figure 2).68-71 
This gene is ubiquitously expressed in all human tissues and 
is localized in the nucleus, cytoplasm and mitochondria.71-73 
TRMT1 contributes to tRNA folding and inhibition of 
Watson-Crick base pair formation (base-pairing stability) in 
different tRNAs.15,73,74

Different homozygous frameshifts of TRMT1 have been 
reported in three Iranian families with cognitive impairment 
and facial dysmorphism. All identified mutations are located 
in the catalytic domain of TRMT1 which is conserved 
during evolution.39,40 It was predicted that these mutations 
resulted in the production of a truncated protein, and hence 
led to loss of enzyme activity, although it had previously 
been identified that any mutation in conserved regions of 
TRMT1 can abrogate tRNA methyltransferases, proper 
RNA binding and stability.40,68,75

A recent study by Dewe and colleagues confirmed that a 
deficiency in m2

2G modification reduces the proliferation 
rates and perturbs the translation of specific homeostatic 
proteins involved in the cellular oxidative stress response. 
They also showed that the loss of activity of TRMT1 affects 
the levels of reactive oxygen species (ROS), cellular response 
to oxidative stress that increases endogenous ROS levels, and 
sensitivity of cells to oxidizing products.74 Numerous studies 
have shown that there is a correlation between excessive 
ROS levels and apoptosis.76-81
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According to these results, and the extreme sensitivity of 
the brain to alterations of ROS levels, it has been proposed 
that homozygous mutations in the TRMT1 gene can disrupt 
neural cell growth, proliferation and survival of especially 
neural stem cells that play a crucial role in cognitive ability. 
Therefore, ID can be a clinical symptom in the absence or 
dysfunction of TRMT1 enzyme.33-35,74,82-84

Mutations in another tRNA modification enzyme, FtsJ 
RNA Methyltransferase Homolog 1 (FTSJ1), homologous 
to the yeast methyltransferase 7 (TRM7), have been 
identified in families with non-syndromic X-linked ID 
(NSXLID).41-44,85 FTSJ1 protein contains an AdoMet-
binding domain which can methylate nucleosides at 
positions 32 and 34 on tRNATrp, tRNALeu and tRNAPhe 
(Figure 2).17,45 Some experimental data have demonstrated 
that FTSJ1 is highly expressed in the fetal brain, specifically 
in central nervous system, in comparison to adult brain and 
other tissues, which emphasizes the potential role of FTSJ1 
in brain development and cognitive skills.41,45 Different 
deleterious mutations of FTSJ1 have been identified in 
families with NSXLID and young males of the Han Chinese 
population with cognitive disorders.43,44

Reduced levels of tRNA methylation, protein dysfunction 
and instability were observed in NSXLID families, which 
were caused by FTSJ1 mutations. Notably, new findings 
from human cell lines obtained from NSXLID patients 
implicate a significant reduction in peroxywybutosine 
(o2yW37 is dependent on Cm32 and Gm34 modification) 
levels in tRNAPhe, and disruption of 2’-O-methylation of 
N32 and N34 of the anticodon loop of tRNAs.45 These 
results indicate that 2’-O-methylation deficiencies may 
cause ID. Consistently, cell growth deficiencies were 
observed in organisms with tRNAPhe insufficiency resulting 
from mutant TRM7.45,85

Intriguingly, overexpression of FTSJ1 can also be 
deleterious, because some cases with mild or moderate ID 
were associated with chromosomal duplication of the region 
containing FTSJ1; however, the pathogenic pathway has not 
yet been demonstrated.86,87

Elongator Protein Complex (ELP) is another tRNA 
methyltransferase whose deficiency has been linked to 
ID. Elongator complex modifies uridine at position 34 
in the anticodon of several tRNAs via SAM mechanism 
(Figure 2).48,88 This complex consists of multiple subunits 
which are highly conserved among eukaryotes, and plays 
different roles including regulation of tRNA modification 
with SAM-binding domain, transcription elongation, 
microRNA (miRNA) biogenesis, and α-tubulin and histone 
acetylation.48,88-90 

Different variants of elongator complex genes have 
been reported as the cause of neurological disorders.20 For 
example, ELP3 mutations are associated with amyotrophic 
lateral sclerosis (ALS). Because this gene is involved in 
histone and alpha tubulin acetylation, so its defects influence 
axonal biology and motor neuron stability.46,47,91

Allelic variants in ELP1 and ELP4 are associated with 
Familial dysautonomia (FD) and Rolandic epilepsy, 
respectively. Some experiments have shown that ELP1 is 

necessary for accurate formation and function of neural 
cells and cell motility. Other studies have shown that ELP4 
variants can perturb brain development via interruption of 
elongator complex interaction with essential genes for the 
brain.49,50,52,89

ID has been reported in four families with a homozygous 
mutation in ELP2. Two of the reported families have 
missense mutations at the same amino acid position, albeit 
their origin is completely different.39,53 Involvement of the 
ELP2 gene in signal-transducing platform and histone 
acetyltransferase activity is linked to a neurodevelopmental 
disorder.48,53

Interestingly, all disorders that have been identified with ELP 
deficiency are because of failure of 5-methoxycarbonylmethyl-
2-thiouridine (mcm5s2U) formation at position 34 of tRNAs. 
It has been demonstrated that this modification is essential 
for appropriate function of neural cells.48,90,92,93

In general, elongator protein complex regulates 
transcriptional elongation of almost all genes that are 
involved in neurodevelopmental processes such as axon 
growth, neuronal signaling and cell motility. In addition, 
this complex controls neurotransmitter release, synapse 
formation, and neural cell migration by interaction with 
filamin A, and is involved in vesicular trafficking and 
exocytosis.48,89,94,95 These functions show the crucial role 
of the elongator complex in nervous system, although the 
mechanisms and neuropathogenic effects of ELP have not 
yet been clarified completely.

ID has been identified in families with mutations in 
Human WD repeat domain 4 (WDR4), a homolog to 
yeast TRM82.13,55 The product of this gene is a subunit of a 
methyltransferase enzyme that modifies a highly conserved 
guanosine to 7-methylguanosine (m7G) at position 46 
of several tRNAs (Figure 2).54,59 This gene contains two 
different transcripts encoded the same protein. The smaller 
transcript is highly expressed in some fetal tissues such 
as heart, kidney and brain, while the larger transcript is 
weakly expressed in all adult tissues. The expression pattern 
suggests that the smaller transcript plays a crucial role in 
developmental processes.55

WDR4 was reported as a candidate gene for Down’s 
syndrome by Michaud and colleagues, although the exact 
correlation between this gene and disease was not revealed.55 
Recently, a missense mutation in WDR4 has been linked 
to a distinct form of microcephalic primordial dwarfism 
(PD) with different neurological symptoms such as severe 
microcephaly, facial dysmorphism, severe encephalopathy, 
and seizure.54

Defective WDR4 impairs m7G methylation and decreases 
m7G level which can lead to tRNA degradation, reduction 
in specific tRNA species, and abnormal translation resulting 
in perturbation of protein synthesis. 14,22,54,96 A reduction 
in m7G46 modification can cause severe growth deficiency 
or impaired protein translation. However, it has not been 
clarified whether decreased proliferation, accelerated 
apoptosis, or both, could have an effect on cell growth in 
patients with WDR4 variants.14,54

Finally, some reports showed mutations in highly 
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conserved NOP2/Sun RNA methyltransferase family 
member 2 (NSUN2) gene as a causative link to autosomal 
recessive ID.56,59,60 Deletion of the ortholog of Nsun2 in flies 
was associated with severe short-term memory deficiency.56

Position 34 (wobble position) of tRNALeu and also position 
48–50 on several tRNAs are modified to 5-methylcytosine 
(m5C) by an enzyme encoded by NSUN2 gene (Figure 
2). This modification is needed for proper translation, 
cellular stress response, cell division, spindle assembly and 
chromosome segregation.35,56,97-99

ID with additional features has been observed in some 
patients with NSUN2 mutations.56-60 In one family with 
three children, phenotypes were similar to Dubowitz 
syndrome, and in another family, only one affected male 
had Noonan syndrome.57 Moreover, different clinical 
manifestations such as short stature, dysarthria, dysmorphic 
features, microcephaly, and developmental delay have been 
reported in other families.56,60

A reduction in mRNA levels due to nonsense-mediated 
mRNA decay (NMD) degradation has been identified 
in almost all allelic variants of NSUN2. In other cases, 
mutations in NSUN2 result in aberrant localization of 
protein to nucleoli, aggregation in the nucleoplasm, and loss 
of enzyme activity.35,60,99

Loss of Nsun2 function have several different effects such 
as impaired tRNA-protein binding, elevated cleavage of 
5’tRNA fragments mediated by angiogenin, and increased 
cell sensitivity to oxidative agents.35 Angiogenin catalyzes 
stress-induced cleavage of tRNAs to prevent translation and 
rescue cells in different stress conditions. Emerging evidence 
indicates that angiogenin acts as a preserver of neural cells 
during the stress response as well as playing a key role in cell 
proliferation and survival.35,100-102 Aberrant accumulation 
of 5’tRNA fragments leads to decreased protein synthesis 
and elevated cell sensitivity to stress in human and mouse 
cells.35,101-103 Therefore, inhibition of cytosine-5 methylation 
can cause neurological diseases and different phenotypes.

Conclusion
This review summarizes our current understanding of the 
molecular mechanism linking tRNA methyltransferases to 
human neurological disorders, especially ID.

Although the specific molecular mechanisms explaining 
how some Trms affect neurological functions remain 
unclear, recent discoveries indicate that Trms play a 
critical role in development of the nervous system and 
its functions. Also any perturbation in these enzymes can 
impact on neurodevelopmental processes and cognitive 
abilities.12,13,17,19,20,30,35

On the other hand, different experimental data have 
shown that neural cells are highly sensitive to defects in 
tRNA methyltransferases as a result of impaired protein 
translation and/or their regulation. Also, they have revealed 
that any alteration in tRNA methylation status may have 
an effect on several basic biological processes including 
apoptosis, cell growth, and cell response to stress.17,19,35,74

Now, we need to promote research on the maturation 
pathways of tRNA and their functions for a better 
understanding of diagnosis and prognosis of different 

disorders and the effect of tRNA on diseases as well as 
providing potential treatment strategies for rectifying 
hypomodified tRNAs. In this context, developments 
in various technologies such as tRNA sequencing, mass 
spectrometry-based approaches, advances in transcriptomics-
proteomics approaches, and animal models will be helpful.

Finally, it will be necessary to improve our insight with 
regard to the potential role of other genes in tRNA function 
whose disruptive influence can lead to neurodevelopmental 
diseases by different pathways.
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