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Abstract
Background: Transcranial direct current stimulation (tDCS) is a non-invasive method that improves learning and memory. In 
this study, the effect of tDCS on streptozotocin (STZ) induced amnesia in the presence or absence of SCH23390 (D1 dopamine 
receptor antagonist) and sulpiride (dopamine D2 receptor antagonist) has been investigated in male Wistar rats. 
Methods: Passive avoidance memory, locomotor activity and pain perception have been assessed by step-through, open-field 
and hot-plate instruments, respectively. Anodal and cathodal tDCS were exerted on the left frontal cortex with an intensity of 0.2 
milliamps for 20 minutes twice a day in 2 successive days. 
Results: Our study showed that STZ at doses of 30 and 60 mg/ml/kg caused amnesia, while they did not alter locomotor activity 
and a higher dose of STZ induced analgesia 14 days after injection. SCH23390 (0.001 mg/mL/kg) and sulpiride (0.1 mg/mL/kg) 
did not alter memory formation by themselves and amnesia induced by STZ (30 and 60 mg/mL/kg), while SCH23390 restored the 
analgesia induced by STZ (60 mg/mL/kg). Moreover, left frontal anodal and cathodal tDCS restored memory impairment induced 
by STZ (30 and 60 mg/mL/kg). Also, SCH23390 and sulpiride could prohibit the anodic stimulating effect on memory impairment 
induced by a dose of 60 mg/ml/kg, but they did not hinder the effect of the cathodal stimulation on this phenomenon. 
Conclusion: The study showed that D1 and D2 dopamine receptors are involved in the restoration effect of left frontal anodal- but 
not cathodal-tDCS in STZ-induced amnesia.
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Introduction
Diabetes is the most common endocrine disease in the 
world, annually responsible for 4 million deaths which are 
predicted to amount to 439 million in 2030.1  Diabetes 
affects the metabolism of lipids and carbohydrates leading 
to microvascular complications (retinopathy, nephropathy, 
neuropathy, and impaired wound healing) and 
macrovascular complications (stroke and cardiovascular 
complications). It also causes problems in cognition, 
learning, mood flexibility and memory including 
emotional memory.2-4 For example, an interesting study 
showed emotional declarative memory impairment in type 
2 diabetes.5 It seems that the emotional arousal can improve 
memory processing through a possible interconnection 

between amygdala and dorsolateral prefrontal region (for 
working memory) and medial temporal lobe (declarative 
memory).6 Among these, neuropathy, as one of its 
commonest complications, brings about disorders in the 
sensitivity of central nervous system to pain stimuli.7 It is 
reported that approximately 50% of diabetic patients in 
some stages of life illustrate increased pain perception8,9 via 
pro-inflammatory cytokines10,11 inasmuch as these factors 
increased sensory transmission.

Hence, the risk of Alzheimer’s and other dementia 
diseases in people with diabetes is 2 or 3 times higher 
than in healthy people.12  Although the mechanism of 
brain damage, including the memory impairment caused 
by diabetes and streptozotocin (STZ) induced diabetes 
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is unknown,  it appears to be a multifactorial process 
in which changes in glucose levels, reducing insulin 
signaling, metabolic and vascular disorders such as acute 
and chronic reduced blood flow,13 changes in the cellular 
calcium homeostasis14 and defects in the induction of 
long-term potentiation (LTP) might be involved.15,16 
Moreover, empirical studies indicate that STZ induced 
diabetes results in oxidative stress in brain regions such 
as cortex and hippocampus17-20 and also there is a change 
in neurotransmitters like dopamine and acetylcholine.21-23 
That is why in the future, cognitive problems, especially 
memory problems in people with diabetes will become 
one of the most important and challenging issues in the 
treatment of these people.

Dopamine as a neurotransmitter is involved in 
activities like learning, memory and reward process. 
This neurotransmitter plays its role through G-protein 
receptors, such as pseudo D1 receptors (including D1 
and D5) and pseudo D2 receptors (including D2, D3 and 
D4).24,25 The number of D1 receptors in the frontal cortex 
is more than the number of D2 receptors. Many behavioral 
studies show that D1 receptors in the frontal cortex play 
an important role in memory, including working memory. 
D2 receptors are also involved in working memory.26-28

Transcranial direct current stimulation (tDCS) is a 
noninvasive and painless method in which a weak electric 
current is sent directly to the brain through the electrodes 
attached to the scalp.29,30 The tDCS, according to polarity 
changes in the excitability of neurons during or after 
stimulation, induces changes in brain function. The effect 
of tDCS applied to the brain is not limited only to the time 
of applying the current. They can also last up to several 
minutes or even hours after the current is applied. This 
method, compared to other similar methods, particularly 
the repetitive transcranial magnetic stimulation (rTMS) 
and other invasive methods, is safer, more economical 
and more bearable.31,32 Many studies have been done on 
the effects of tDCS. In animal models, tDCS improved 
learning and recognition memory in Alzheimer’s disease29 
and it has been beneficial in the regeneration of neurons 
in Parkinson’s disease, depression and stroke.33-35 This 
method also increases the activity of frontal cortex neurons 
and the consistency of the midbrain areas.36 Human 
studies also show that tDCS facilitates neural connections 
and improves learning and memory.31,37

The effects of tDCS on the improvement of memory 

corruption have been reported in several experimental 
models including fear memory38 and emotional memory.39 
On the other hand, empirical studies indicate that STZ 
induced diabetes cause emotional memory corruption; 
however, no study has been performed to determine the 
effects of tDCS on the memory defect induced by STZ. 
With these in mind, and with respect to the increasing 
prevalence of diabetes and the fact that no specific 
treatments have been found for controlling the cognitive 
impairment caused by diabetes, the present study was 
performed to investigate the effects of tDCS on amnesia 
induced by STZ in the presence or absence of D1 and D2 
dopamine receptor antagonists, because these receptors are 
involved in this kind of memory.40

Materials and Methods
Animals
In this study, male Wistar rats weighing 200–220 were 
used which were taken from the animal room of the 
Institute of Cognitive Sciences (ICSS). Animals were 
housed at the temperature of 22 ± 2°C in 12 hours of light 
and 12 hours of darkness and in groups of 3 to 4 animals 
per cage. Animals had free access to food and water. To do 
each test, 7 rats from all groups were used and each animal 
was used only once. Animals were kept under the Guide 
for the Care and Use of Laboratory Animals issued by 
NIH (NIH publication no. 85–23, revised 1985) and the 
instructions for keeping lab animals made by the Institute 
of Cognitive Sciences. Experimental design timeline has 
been summarized in Figure 1.

Surgery
The rats were anesthetized by intraperitoneal injection of 
ketamine hydrochloride (50 mg/kg) together with xylazine 
(5 mg/kg) and then were put in a stereotaxic apparatus 
(Industrial Tower Examiner, Iran). After removing the 
scalp, the skull was cleaned with alcohol and the electrode 
(which could provide 3.5 mm2 of effective contact surface 
area when filled with normal saline) was placed in the 
anterior (1.5 mm) and left (1.5 mm) from Bregma which 
is related to the left frontal cortex. This was done in such 
a way that the tip of the electrode would be kept at the 
center of the region. To fix the electrodes dental cement 
was used in which acrylic monomers were used. Then the 
mice returned to the cage and allowed to rest for 7 days to 
recover from the effects of anesthesia. 

Figure 1. Experimental Design Timeline.
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Stimulation
A week after surgery and recovery, a device (Nerurostim 
2 Brain Stimulation Device from SinaPsycho Company, 
Tehran, Iran) was used to produce stimulating direct 
current. To stimulate the frontal cortex, an electrode was 
used which was fixed directly on the skull. In order to create 
an effective contact area the electrode was filled with saline 
solution (NaCl 0.9%) and another carbon electrode, as the 
counter electrode, with the length of 9.5 cm. was covered 
in wet sponge and fastened to the animal’s breast like a 
vest which would provide safe and efficient stimulation. 
Moreover, it would minimize the electric current bypass. 
The rats received anodal and cathodal stimulation at 
the intensity of 0.2 mA for 20 minutes twice a day in 2 
consecutive days in according previous studies.41-44 

Memory Test
The Step-through Inhibitory Avoidance Apparatus
The device (Borj Sanat Azma, Iran) consisted of a box 
made up of 2 parts: a light section (30 × 20 × 20 cm) and 
a dark one (30 × 20 × 20 cm) which were separated by 
a guillotine door (7 × 9 cm). The floor of the dark side 
was covered by steel bars (with a thickness of 2.5 mm 
and at 1-cm intervals). The electric shock would pass to 
the animal’s feet through these bars. The electric shock 
(50 Hz, 3 seconds, at the intensity of 1 mA) would be 
transmitted from the stimulator (Borj Sanat Azma, Iran) 
to the floor of the dark side.

Training
The animals were transferred to the test room 60 minutes 
before the test. Then, to get acquainted with the device, 
each animal was gently placed in the light side of the device 
and after 5 seconds the guillotine door would open and 
the animal with its natural tendency to dark environment 
would go to the dark side. Its delay time for entering the 
dark side was recorded. Animals with more than 100 
seconds delay were excluded. When the animal completely 
entered the dark side, the guillotine door would close and 
after 10 seconds the rat would be gently removed from the 
device and would be returned to the cage. Thirty minutes 
later the test animals were transferred to the light side and 
after 5 seconds the guillotine door would open. As soon 
as the animal fully entered the dark part, the door would 
close and a mild shock would be applied through the bars 
at the floor of the dark side. After 20 seconds the rats would 
be removed from the dark side and the whole procedure 
would be repeated after 2 minutes. When the rat disdained 
from entering the dark side after 120 seconds, it would 
mark the end of training. The number of entries into the 
dark room was recorded.45-47

Retrieval Test
Twenty-four hours after training, each rat would be gently 
placed in the light side. After 20 seconds the door would 

open, and the delay for entering the dark side would be 
recorded. When the animal did not enter the dark side 
within 300 seconds, it would mark the end of the test.

Measurement of Locomotor Activity
The device for recording motor activity (Borj Sanat Azma, 
Iran) consisted of an unenclosed Plexiglas box with walls 
made of Pyrex glass and the floor made of black Pyrex. 
The locomotor activity of the animal was recorded within 
5 minutes by 16 photo cells embedded in the floor sides 
of the device.

Hot Plate Test
In this test, animals were individually placed into a glass 
cylinder on a hot plate (Borj Sanat Azma, Iran) with the 
temperature adjusted to 52 ± 1ºC. The latency to the first 
sign of paw licking or jump response to avoid the heat was 
taken as an index of the pain threshold; the cut-off time 
was 60 seconds in order to avoid damage to the paw.

Drugs
The drugs used in this study consisted of STZ at doses 
of 30 and 60 mg/mL/kg, SCH23390 (R (+) - 7-chloro-
8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-
benzazepine hy-drochloride) as dopamine D1 receptor 
antagonist, at a dose of 0.001 mg/mL/kg and sulpiride as 
dopamine D2 receptor antagonist, at a dose of 0.1 mg/
mL/kg. All the drugs were provided by Sigma, St. Louis, 
USA. The STZ and SCH23390 were dissolved in saline 
0.9% immediately before injection, while sulpiride was 
dissolved in one drop of acetic acid. The control groups 
received saline or vehicle (1 mL/kg). All drugs were 
injected intraperitoneally (i.p).

Diabetes Induction 
Three days after the injection of STZ, in order to control 
blood sugar changes and to determine the time and the 
severity of experimental diabetes a glucometer (Elegans, 
Germany) was used to test blood sugar levels after a 12-
hour fasting. The blood glucose levels above 250 mg/dL 
were considered as diabetic.48

Statistical Analysis
All data were reported as mean ± SD. In order to compare 
the time of memory corruption induced by STZ in 7th 
and 14th days, one-way analysis of variance (ANOVA) 
was used and to compare the effect of stimulation in 
the absence or presence of SCH23390 and sulpiride the 
two-way ANOVA was used. The pairwise comparison of 
the groups was performed using Tukey test. In this study 
P < 0.05 was considered as significant and all statistical 
analysis was conducted using SPSS software version 24. 
Moreover, the effect sizes (partial eta squared, denoted as 
R2) with 95% confidence intervals (CI) reported in the 
result section.
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Experimental Design
The Effects of STZ on Memory, Locomotor Activity and Pain 
Threshold
For this experiment, 5 groups of animals, including a 
control group and 4 intervention groups were used. The 
control group received normal saline (1 mL/kg) and the 
intervention groups received STZ at doses of 30 mg/mL/
kg (2 groups) and 60 mg/mL/kg (2 groups). The relevant 
tests were performed 7 or 14 days after the injection. This 
experiment was designed to investigate the effect of STZ 
(30 or 60 mg/mL/kg) on memory, locomotor activity 
and pain threshold when injection was done 7 or 14 days 
before behavioral test.

The Effect of STZ on Memory, Locomotor Activity and Pain 
Threshold in the Presence and Absence of SCH23390 or 
Sulpiride 
For this experiment, nine groups of animals were divided 
into 3 subgroups: The animals which received saline (1 
mL/kg), SCH23390 (0.001 mg/mL/kg) or sulpiride (0.1 
mg/mL/kg) 14 days after the injection of saline (1 mL/
kg), (3 groups), STZ (30 mg/mL/kg, 3 groups) or STZ 
(60 mg/mL/kg, 3 groups). This experiment was designed 
to investigate the effect of SCH23390 and sulpiride on 
responses induced by STZ (30 and 60 mg/ml/kg) when 
injection was done 14 days before behavioral test.

The Effect of Left Frontal Anodal- or Cathodal-tDCS on 
Amnesia Induced by STZ
To do this experiment, nine groups of animals were 
divided into 3 subgroups: The animals which received 
saline (1 mL/kg) or STZ (30 or 60 mg/mL/kg), 14 days 
before sham-tDCS (control groups, 3 groups), anodal (3 
groups) or cathodal (3 groups) tDCS. This experiment 
was designed to investigate if anodal or cathodal tDCS 
could alter STZ-induced amnesia.

The Effect of SCH23390 or Sulpiride on the Restoration 
Effect of Left Frontal Anodal tDCS on STZ-Induced Amnesia
In this experiment, 6 groups of rats were used. 14 days 
after the injection of saline (1 mL/kg) or STZ (30 or 60 
mg/mL/kg), the animals received saline (1 mL/kg) or 
SCH23390 (0.001 mg/mL/kg) 15 minutes before left 
frontal anodal tDCS, while vehicle of sulpiride (1 mL/kg) 
or sulpiride (0.1 mg/mL/kg) was given 30 minutes before 
that. This experiment was designed to investigate if the 
deactivation of D1 or D2 dopamine receptor could block 
memory restoration effect of left frontal anodal tDCS on 
STZ-induced amnesia.

The Effects of SCH23390 or Sulpiride on Restoration Effect 
of Left Frontal Cathodal tDCS on STZ-Induced Amnesia
In this experiment, 6 groups of rats were used. Fourteen 
days after the injection of saline (1 mL/kg) or STZ (30 

or 60 mg/mL/kg), the animals received saline (1 mL/kg) 
or SCH23390 (0.001 mg/mL/kg) 15 minutes before left 
frontal cathodal tDCS, while vehicle of sulpiride (1 mL/
kg) or sulpiride (0.1 mg/mL/kg) was given 30 minutes 
before it. This experiment was designed to investigate if 
the deactivation of D1 or D2 dopamine receptor could 
block memory restoration effect of left frontal cathodal 
tDCS on STZ-induced amnesia.

Results
The Effects of STZ on Memory, Locomotor Activity and 
Pain Threshold
One-way ANOVA revealed that both doses of STZ (30 
and 60 mg/ml/kg) had no impact on the inhibitory 
avoidance memory [R2 = 0.251, F(2, 18) = 3.0, P > 0.05, 
mean differences 45.7 (95% CIs -47.5, 138.9) and -44.1 
(95% CIs -137.4, 49.1) respectively, Figure 2, panel 2A] 
and pain threshold [R2 = 0.04, F(2, 18) = 0.4, P > 0.05, 
mean differences -0.43 (95% CIs -2.2, 1.3) and 0.1 ( 
95% CIs -1.6, 1.9), respectively, Figure 2, panel 2C] when 
injected 7 days before memory testing. Moreover, similar 
analysis and Tukey test for locomotor activity showed 
that the higher dose of STZ decreased locomotor activity 
[R2 = 0.51, F(2, 18) = 9.2, P < 0.01, mean differences -8 
(95% CIs -32.8, 16.7) and 31.4 (95% CIs 6.7, 56.2), 
respectively, Figure 2, panel 2B].

One-way ANOVA and Tukey test showed that STZ at 
doses of 30 and 60 mg/mL/kg decreased passive avoidance 
memory [R2 = 0.88, F(2, 18) = 67.8, P < 0.001, mean 
differences 206.6 (95% CIs 153.3, 259.8) and 215.8 (95% 
CIs 160.6, 267.1), respectively, Figure 2 panels 3A], Also, 
similar analysis and Tukey test for pain threshold showed 
that the higher dose of STZ increased pain threshold 
[R2 = 0.46, F(2, 18) = 7.8, P < 0.001, mean differences 
1.3 (95% CIs -4.4, 6.9) and -6.8 (95% CIs -12.5, -1.2), 
respectively, Figure 2 panels 3C], while it did not alter 
locomotor activity [R2 = 0.06, F(2, 18) = 0.6, P > 0.05; 
Figure 2, mean differences -7.3 (95% CIs -60.5, 45.9) and 
5.6 (95% CIs -9.6, 20.8), respectively, panel 3B], when 
injected 14 days before behavioral testing.

The Effects of STZ on Memory, Locomotor Activity and 
Pain Threshold in the Presence and Absence of SCH23390 
or Sulpiride

The one-way ANOVA showed that SCH23390 or 
sulpiride did not affect the animals’ inhibitory avoidance 
memory [R2 = 0.01, F(2, 18) = 0.1, P > 0.05, mean 
differences 7.8 (95% CIs -97.8, 113.5) and 14.6 (95% 
CIs -91.1, 120.3), respectively, Figure 3, panel 1A], 
locomotor activity [R2 = 0.18, F(2, 18) = 2.0, P > 0.05, 
mean differences -17.1 (95% CIs -39.9, 5.6) and -3.7 
(95% CIs -26.5, 19.1), respectively, Figure 3, panel 1B], 
and pain threshold [R2 = 0.03, F(2, 18) = 0.3, P > 0.05, 
mean differences -1.4 (95% CIs -6.7, 3.8) and -1.1 (95% 
CIs -6.4, 4.1), respectively, Figure 3, panel 1C] by itself.
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Similar analysis showed that SCH23390 or sulpiride did 
not alter the memory corruption induced by STZ at the 
dose of 30 mg/mL/kg [R2 = 0.03, F(2, 18) = 0.3, P > 0.05, 
mean differences 1.3 (95% CIs -29.1, 31.7) and -7.3 (95% 
CIs -37.7, 23.1), respectively, Figure 3, panel 2A] or at the 
dose of 60 mg/mL/kg [R2 = 0.07, F(2, 18) = 1.4, P > 0.0.5, 
mean differences -11.3 (95% CIs -41.4, 18.8) and -12.0 
(95% CIs -42.1, 18.1), respectively, Figure 3, panel 3A]. 
Moreover, the locomotor activity induced by STZ at the 
dose of 30 mg/mL/kg [R2 = 0.06, F(2, 18) = 3.6, P > 0.05, 
mean differences -5.0 (95% CIs -33.2, 23.7) and 6.8 (95% 
CIs -21.4, 35.1), respectively, Figure 3, Panel 2B] or at the 
dose of 60 mg/mL/kg [R2 = 0.22, F(2, 18) = 2.6, P > 0.05, 
mean differences 16.1 (95% CIs -4.4, 36.7) and 0.6 (95% 
CIs -19.9, 21.1), respectively, Figure 3, panel 3B] did not 
alter following SCH23390 or sulpiride injection, either.

Moreover, Similar analysis showed that sulpiride 
increased the pain threshold induced by STZ at the dose 
of 30 mg/mL/kg [R2 = 0.50, F(2, 18) = 9.0, P < 0.05, 
mean differences 1.9 (95% CIs -2.9, 5.5) and -5.9 (95% 
CIs -9.5, -1.1), respectively, Figure 3, panel 2C] and 
SCH23390 decreased the pain threshold induced by STZ 

at the dose of 60 mg/mL/kg [R2 = 0.41, F(2, 18) = 6.3, 
P < 0.01, mean differences 8.9 (95% CIs 2.2, 14.3) and 
5.4 (95% CIs -0.6, 11.5), respectively, Figure 3, panel 3C].

The Effects of Left Frontal Anodal- or Cathodal-tDCS on 
Amnesia Induced by STZ
The two-way ANOVA and post hoc Tukey’s test showed 
that left frontal anodal tDCS [STZ effect: R2 = 0.7, F(2, 
36) = 43.5, P < 0.001, mean differences 171.1 (95% CIs 
132.1, 210.2) for STZ 30 mg/kg and 132.5 (95% CIs 93.5, 
171.5) for STZ 60 mg/kg; tDCS effect: R2 = 0.63, F(1, 
36) = 60.752, P < 0.001, mean differences -122.4 (95% 
CIs -154.3, 90.6); STZ and tDCS interaction effect: R2 = 
0.37, F(2, 36) = 10.8, P < 0.001, mean differences 171.1 
(95% CIs 124.1, 218.2) for STZ 30 mg/kg and 132.5 
(95% CIs 85.5, 179.5) for STZ 60 mg/kg; Figure 4, panel 
2A) or cathodal tDCS [STZ effect: R2 = 0.59, F(2, 36) = 
43.5, P < 0.001, mean differences 148.3 (95% CIs 96.6, 
200.0) for STZ 30 mg/kg and 165.5 (95% CIs 113.7, 
217.2) for STZ 60 mg/kg; tDCS effect: R2 = 0.41, F(1, 
36) = 60.752, P < 0.001, mean differences -103.8 (95% 
CIs -146.0, -61.5); STZ and tDCS interaction effect: R2 

Figure 2. The Effect of STZ on Memory Formation (panels 1A, 2A and 3A), 
Locomotor Activity (panels 1B, 2B and 3B) and Pain Threshold (panels 
1C, 2C and 3C). Five groups of animals, including a control group and 4 
intervention groups were used. The control group received normal saline (1 
mL/kg) and intervention groups received STZ at doses of 30 (2 groups) and 
60 (2 groups) mg/ml/kg. The relevant tests were performed 7 or 14 days after 
the injection. Values are expressed as mean ± SD. (n = 7 in each group). *P 
< 0.05, **P < 0.01 and ***P < 0.001 compared to the saline control group.

Figure 3. The Effect of STZ on Memory (panels 1A, 2A and 3A), Locomotor 
Activity (panels 1B, 2B and 3B) and Pain Threshold (panels 1C, 2C and 
3C) in the Presence and Absence of SCH 23390 or Sulpiride. Nine groups 
of animals were divided into 3 subgroups. The animals received saline (1 
ml/kg), SCH23390 (0.001 mg/ml/kg) or sulpiride (0.1 mg/mL/kg) 14 days 
after injection of saline (1 mL/kg, 3 groups), STZ (30 mg/mL/kg, 3 groups) 
or STZ (60 mg/mL/kg, 3 groups). Values are expressed as Mean ± SD. (n 
= 7 in each group).  *P < 0.05 compared to control group in the panel 2. 
++P < 0.01 compared to the control group in panel 1. ≠ ≠ P<0.01 compared to 
the control group in panel 3.
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= 0.19, F(2, 36) = 10.8, P < 0.001, mean differences 148.3 
(95% CIs 85.9, 210.6) for STZ 30 mg/kg and 165.5 (95% 
CIs 103.2, 227.8) for STZ 60 mg/kg] restored the amnesia 
induced by both doses of STZ 14 days after injection of 
STZ.

Furthermore, the two-way ANOVA reveled that left 
frontal anodal tDCS [STZ effect: R2 = 0.1, F(2, 36) = 
0.2, P > 0.05, mean differences -2.4 (95% CIs -13.0, 8.3) 
for STZ 30 mg/kg and -3.2 (95% CIs -13.9, 7.4) for 
STZ 60 mg/kg; tDCS effect: R2 = 0.08, F(1, 36) = 3.2, 
P > 0.05, mean differences 7.7 (95% CIs -1.0, 16.4); STZ 
and tDCS interaction effect: R2 = 0.02, F(2, 36) = 0.4, 
P > 0.05, mean differences -2.4 (95% CIs -15.2, 10.5) for 
STZ 30 mg/kg and -3.2 (95% CIs -16.1, 9.6) for STZ 60 
mg/kg; Figure 4, panel 2B] or cathodal tDCS [STZ effect: 
R2 = 0.03, F(2, 36) = 0.5, P > 0.05, mean differences 4.2 
(95% CIs -5.2, 13.2) for STZ 30 mg/kg and 3.9 (95% CIs 
-4.2, 8.4) for STZ 60 mg/kg; tDCS effect: R2 = 0.27, F(1, 
36) = 13.5, P < 0.001, mean differences 14.0 (95% CIs 
6.3, 21.7); STZ and tDCS interaction effect: R2 = 0.02, 
F(2, 36) = 0.3, P > 0.05, mean differences 4.2 (95% CIs 
-7.2, 15.6) for STZ 30 mg/kg and 3.9 (95% CIs -3.5, 9.8) 
for STZ 60 mg/kg; Figure 4, panel 3B] did not alter STZ 
responses for locomotor activity.

Also, the two-way ANOVA reveled that left frontal 
anodal tDCS [STZ effect: R2 = 0.32, F(2, 36) = 8.5, 
P < 0.001, mean differences 0.0 (95% CIs -4.7, 4.6) 
for STZ 30 mg/kg and -8.2 (95% CIs -12.9, -3.5) for 
STZ 60 mg/kg; tDCS effect: R2 = 0.14, F(1, 36) = 5.6, 
P < 0.05, mean differences -4.5 (95% CIs -8.3, -0.7); STZ 
and tDCS interaction effect: R2 = 0.02, F(2, 36) = 0.4, 
P > 0.05, mean differences 0.0 (95% CIs -5.6, 5.6) for 
STZ 30 mg/kg and -8.2 (95% CIs -13.8, -2.5) for STZ 
60 mg/kg; Figure 4, panel 2C] or cathodal tDCS [STZ 
effect: R2 = 0.22, F(2, 36) = 5.1, P < 0.05, mean differences 
3.5 (95% CIs -0.3, 7.3) for STZ 30 mg/kg and -2.5 (95% 
CIs -6.3, 1.3) for STZ 60 mg/kg; tDCS effect: R2 = 0.25, 
F(1, 36) = 11.9, P < 0.001, mean differences -5.3 (95% 
CIs -8.4, -2.2); STZ and tDCS interaction effect: R2 = 0.1, 
F(2, 36) = 2.0, P > 0.05; mean differences 3.5 (95% CIs 
-1.1, 8.1) for STZ 30 mg/kg and -2.5 (95% CIs -7.1, 2.1) 
for STZ 60 mg/kg; Figure 4, panel 3C] did not alter STZ 
responses for pain threshold.

The Effects SCH23390 or Sulpiride in Restoration Effect 
of Left Frontal Anodal tDCS on STZ-Induced Amnesia 
The 2-way ANOVA and post hoc Tukey’s test revealed 
that the subthreshold dose of SCH23390 [STZ effect: R2 
= 0.4, F(2, 36) = 12.4, P < 0.001, mean differences 103.3 
(95% CIs 47.4, 159.3) for STZ 30 mg/kg and 129.7 
(95% CIs 73.7, 185.6) for STZ 60 mg/kg; SCH23390 
effect: R2 = 0.21, F(1, 36) = 9.8, P < 0.01, mean differences 
70.5 (95% CIs 24.8, 116.2); STZ and SCH23390 
interaction effect: R2 = 0.32, F(2, 36) = 8.5, P < 0.001, 
mean differences 103.3 (95% CIs 35.9, 170.8) for STZ 

Figure 4. The Effect of STZ on Memory (panels 1A, 2A and 3A), Locomotor 
Activity (panels 1B, 2B and 3B) and Pain Threshold (panels 1C, 2C and 3C) 
in the Presence of Anodal and Cathodal tDCS in the Left Frontal Cortex. 
Nine groups of animals were divided into 3 subgroups. The animals 
received saline (1 mL/kg) or STZ (30 or 60 mg/mL/kg), 14 days before 
sham-tDCS (control groups, 3 groups), anodal (3 groups) or cathodal (3 
groups) tDCS. Values are expressed as mean ± SD. (n = 7 in each group). 
**P < 0.01 and ***P < 0.001 compared to the control group in panel 1. 
+++P < 0.001 compared to STZ at dose of 30 mg/mL/kg in panel 1. ¥¥P < 0.01 
and ¥¥¥P < 0.001 compared to STZ at dose of 60 mg/ml/kg in panel 1.

30 mg/kg and 129.7 (95% CIs 62.3, 197.1) for STZ 60 
mg/kg; Figure 5, panel 2A] or sulpiride [STZ effect: R2 = 
0.35, F(2, 36) = 9.705, P < 0.001, mean differences 54.4 
(95% CIs 7.2, 101.6) for STZ 30 mg/kg and 102.5 (95% 
CIs 55.3, 149.7) for STZ 60 mg/kg; sulpiride effect: R2 = 
0.2, F(1, 36) = 7.5, P < 0.01, mean differences 52.2 (95% 
CIs 13.6, 90.7); STZ and sulpiride interaction effect: R2 
= 0.46, F(2, 36) = 15.3, P < 0.001; mean differences 54.4 
(95% CIs -2.5, 111.3) for STZ 30 mg/kg and 102.5 (95% 
CIs 45.6, 159.4) for STZ 60 mg/kg; Figure 5, panel 3A] 
blocked the restoration effect of left frontal anodal tDCS 
on STZ -induced amnesia(at the dose of 60 but not the 
dose of 30 mg/mL/kg). 

Furthermore, similar analysis revealed that SCH23390 
[STZ effect: R2 = 0.1, F(2, 36) = 0.1, P > 0.05, mean 
differences 7.2 (95% CIs -4.2, 18.6) for STZ 30 mg/
kg and 11.3 (95% CIs -0.1, 22.8) for STZ 60 mg/kg; 
SCH23390 effect: R2 = 0.01, F(1, 36)=2.0, P > 0.05, 
mean differences 3.1 (95% CIs -6.2, 12.5); STZ and 
SCH23390 interaction effect: R2 = 0.24, F(2, 36) = 1.1, 
P > 0.05; mean differences 7.2 (95% CIs -6.6, 21.0) for 
STZ 30 mg/kg and 11.3 (95% CIs -2.4, 25.1) for STZ 
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60 mg/kg, Figure 5, 2B] and sulpiride [STZ effect: R2 
= 0.008, F(2, 36) = 0.1, P > 0.05, mean differences 2.1 
(95% CIs -9.5, 13.8) for STZ 30 mg/kg and -0.7 (95% 
CIs -12.4, 10.8) for STZ 60 mg/kg; sulpiride effect: R2 = 
0.02, F(1, 36) = 0.6, P > 0.05, mean differences -3.7 (95% 
CIs -13.3, 5.7); STZ and sulpiride interaction effect: R2 = 
0.06, F(2, 36) = 1.0, P > 0.05, mean differences 2.1 (95% 
CIs -11.9, 16.2) for STZ 30 mg/kg and -0.7 (95% CIs 
-14.8, 13.2) for STZ 60 mg/kg, Figure 5, panel 3B] did 
not alter responses induced by left frontal anodal tDCS on 
STZ for locomotor activity.

Also, similar analysis revealed that SCH23390 decreased 
the responses induced by left frontal anodal tDCS on STZ 
for pain threshold [STZ effect: R2 = 0.08, F(2, 36) = 1.6, 
P > 0.05, mean differences -3.6 (95% CIs -8.2, 0.9) for 
STZ 30 mg/kg and -3.3 (95% CIs -7.9, 1.2) for STZ 60 
mg/kg ; SCH23390 effect: R2 = 0.006, F(1, 36) = 0.2, 
P > 0.05, mean differences 0.8 (95% CIs -2.9, 4.6); STZ 
and SCH23390 interaction effect: R2 = 0.3, F(2, 36) = 
8.4, P < 0.001; mean differences -3.6 (95% CIs -9.1, 1.9) 
for STZ 30 mg/kg and -3.3 (95% CIs -8.9, 2.9) for STZ 
60 mg/kg, Figure 5, 2C] and sulpiride [STZ effect: R2 = 
0.19, F(2, 36) = 4.2, P < 0.05, mean differences -1.6 (95% 
CIs -6.1, 2.9) for STZ 30 mg/kg and -6.2 (95% CIs -10.7, 
-1.7) for STZ 60 mg/kg; sulpiride effect: R2 = 0.05, F(1, 

Figure 5. The Effect SCH23390 or Sulpiride in Restoration Effect of Left 
Frontal Anodal tDCS on STZ-Induced Amnesia. Six groups of rats were 
used. 14 days after injection of saline (1 mL/kg) or STZ (30 or 60 mg/mL/
kg), the animals received saline (1 mL/kg) or SCH23390 (0.001 mg/mL/kg) 
15 minutes before left frontal anodal tDCS, while vehicle of sulpiride (1 mL/
kg) or sulpiride (0.1 mg/mL/kg) was given 30 minutes before that.  Values 
are expressed as aean ± SD. (n = 7 in each group). **<0.01 compared to 
control group in panel 1. ¥<0.05, ¥¥<0.01 and ¥¥¥<0.001 compared to STZ 
at the dose of 60 mg/ml/kg in panel 1.

36) = 2.1, P > 0.05, mean differences -2.6 (95% CIs -1.1, 
6.3); STZ and sulpiride interaction effect: R2 = 0.1, F(2, 
36) = 2.1, P > 0.05; mean differences -1.6 (95% CIs -6.9, 
3.8) for STZ 30 mg/kg and -6.2 (95% CIs -11.6, -0.7) for 
STZ 60 mg/kg; Figure 5, panel 3C] did not alter responses 
induced by left frontal anodal tDCS on STZ for pain 
threshold.

The Effect of SCH23390 or Sulpiride in Restoration 
Effect of Left Frontal Cathodal tDCS on STZ-Induced 
Amnesia
The 2-way ANOVA and post hoc Tukey test showed that 
the subthreshold dose of SCH23390 [STZ effect: R2 = 
0.06, F(2, 36) = 1.2, P > 0.05, mean differences 41.2 (95% 
CIs -29.9, 112.3) for STZ 30 mg/kg and 51.0 (95% CIs 
-20.1, 122.1) for STZ 60 mg/kg; SCH23390 effect: R2 
= 0.04, F(1, 36) = 1.6, P > 0.05, mean differences -33.3 
(95% CIs -91.4, 24.7); STZ and SCH23390 interaction 
effect: R2 = 0.07, F(2, 36) = 1.4, P > 0.05; mean differences 
41.2 (95% CIs -44.5, 126.9) for STZ 30 mg/kg and 51.0 
(95% CIs -34.7, 136.7) for STZ 60 mg/kg; Figure 6, 
panel 2A] or sulpiride [STZ effect: R2 = 0.03, F(2, 36) = 
1.2, P > 0.05; mean differences 34.7 (95% CIs -29.1, 98.6) 
for STZ 30 mg/kg and 46.3 (95% CIs -17.6, 110.2) for 
STZ 60 mg/kg; sulpiride effect: R2 = 0.1, F(1, 36) = 1.3, 
P > 0.05, mean differences -29.2 (95% CIs -81.4, 22.9); 
STZ and sulpiride interaction effect: R2 = 0.1, F(2, 36) 
= 2.1, P > 0.05; mean differences 34.7 (95% CIs -42.3, 
111.7) for STZ 30 mg/kg and 46.3 (95% CIs -30.7, 
123.3) for STZ 60 mg/kg; Figure 6, panels 3A] did not 
block the restoration effect of left frontal cathodal tDCS 
on STZ-induced amnesia. 

Furthermore, similar analysis revealed that SCH23390 
[STZ effect: R2 = 0.08, F(2, 36) = 1.6, P > 0.05, mean 
differences 6.5 (95% CIs -10.1, 23.1) for STZ 30 mg/
kg and 14.4 (95% CIs -2.2, 31.1) for STZ 60 mg/kg; 
SCH23390 effect: R2 = 0.05, F(1, 36) = 1.8, P > 0.05, 
mean differences -8.9 (95% CIs -22.5, 4.6); STZ and 
SCH23390 interaction effect: R2 = 0.03, F(2, 36) = 0.6, 
P > 0.05; mean differences 6.5 (95% CIs -13.5, 26.55) for 
STZ 30 mg/kg and 14.4 (95% CIs -5.6, 34.5) for STZ 
60 mg/kg; Figure 6, panel 3B] and sulpiride [STZ effect: 
R2 = 0.06, F(2, 36) = 1.1, P > 0.05, mean differences 7.0 
(95% CIs -5.0, 19.0) for STZ 30 mg/kg and 8.0 (95% 
CIs -3.9, 20.1) for STZ 60 mg/kg; Sulpiride effect: R2 = 
0.05, F(1, 36) = 2.0, P > 0.05, mean differences -6.8 (95% 
CIs -16.7, 2.9); STZ and Sulpiride interaction effect: R2 = 
0.001, F(2, 36) = 0.1, P > 0.05; mean differences 7.0 (95% 
CIs -7.5, 21.5) for STZ 30 mg/kg and 8.0 (95% CIs -6.4, 
22.5) for STZ 60 mg/kg; Figure 6, panel 3B] did not alter 
responses induced by left frontal cathodal tDCS on STZ 
for locomotor activity.

Furthermore, similar analysis revealed that SCH23390 
[STZ effect: R2 = 0.002, F(2, 36) = 3.4, P < 0.05; mean 
differences 4.4 (95% CIs -0.5, 9.4) for STZ 30 mg/kg and 
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-1.8 (95% CIs -6.7, 3.2) for STZ 60 mg/kg; SCH23390 
effect: R2 = 0.2, F(1, 36) = 0.1, P > 0.05, mean differences 
0.6 (95% CIs -3.5, 4.6); STZ and SCH23390 interaction 
effect: R2 = 0.04, F(2, 36) = 0.8, P > 0.05; mean differences 
4.4 (95% CIs -1.5, 10.4) for STZ 30 mg/kg and -1.8 (95% 
CIs -1.7, 2.4) for STZ 60 mg/kg; Figure 6, panel 2C] and 
sulpiride [STZ effect: R2 = 0.04, F(2, 36) = 0.7, P > 0.05, 
mean differences 1.3 (95% CIs -3.7, 6.3) for STZ 30 
mg/kg and -1.7 (95% CIs -6.7, 3.3) for STZ 60 mg/kg; 
Sulpiride effect: R2 = 0.001, F(1, 36) = 0.1, P > 0.05, mean 
differences -0.3 (95% CIs -4.4, 3.7); STZ and Sulpiride 
interaction effect: R2 = 0.08, F(2, 36) = 1.5, P > 0.05, 
mean differences 1.3 (95% CIs -4.7, 7.3) for STZ 30 mg/
kg and -1.7 (95% CIs -7.7, 4.3) for STZ 60 mg/kg; Figure 
6, panel 3C] did not alter responses induced by left frontal 
cathodal tDCS on STZ for pain threshold.

Discussion
Our study showed that STZ has induced impaired memory 
14 days after the drug injection and not after 7 days. 
However, STZ, at a dose of 60 mg/kg, reduced locomotor 
activity 7 days after drug injection and increased the pain 
threshold 14 days after the injection. Seventy-two hours 
after the injection, the animals that received STZ at a 
dose of 60 mg/kg, were diabetized and showed symptoms 
like hyperglycemia, bulimia, polydipsia and polyuria. 
Meanwhile, the animals receiving STZ at a dose of 30 mg/
kg showed no symptoms of diabetes.

The results of the present study are consistent with 
those of many studies which showed that STZ has 
significantly decreased memory. Diabetes and STZ cause 
memory corruption and cognitive disorders in different 
ways. Studies have shown that diabetes caused by STZ, 
possibly through increased oxidative stress and production 
of reactive oxygen species, may induce apoptosis, disorder 
in neurogenesis and consequently decreased neuronal 
proliferation and dendritic spine in the frontal cortex and 
hippocampus.17-20

STZ, as a diabetes inducer and insulin receptor 
antagonist, causes impaired glucose metabolism which is 
the most important fuel for the neurons.49 On the other 
hand, STZ by reducing insulin decreases the amount of 
neurotransmitters such as dopamine and acetylcholine 
which are related to learning and memory,21-23 while, 
by changing calcium influx and causing defects in the 
expression of N-methyl-D-aspartate (NMDA) receptors, 
it induces a defect in the induction of LTP which has 
an important role in the creation and establishment of 
learning and memory.14-16 In addition, STZ by inducing 
metabolic disorders and acute and chronic cardiovascular 
complications, it causes decreased blood flow to the 
brain.13

Several reports indicated that STZ-induced diabetic 
disorder increased pain threshold level in rats50 or mice51 
using hot plate or tail-flick apparatus, respectively. 

Figure 6. The Effect of Cathodal tDCS in the Left Frontal Cortex on the 
Memory Corruption Induced by STZ in the Presence of Sulpiride and 
SCH23390. Six groups of rats were used. 14 days after injection of saline 
(1 mL/kg) or STZ (30 or 60 mg/mL/kg), the animals received saline (1 mL/
kg) or SCH23390 (0.001 mg/ml/kg) 15 minutes before left frontal cathodal 
tDCS, while vehicle of sulpiride (1 mL/kg) or sulpiride (0.1 mg/mL/kg) was 
given 30 minutes before it. Values are expressed as mean ± SD (n = 7 in 
each group).

In contrast, some studies showed that experimental 
diabetes mellitus decreased the morphine-induced 
antinociceptive effect in rats and mice.52-54 It seems that 
the increased glucose levels in the blood contributed to 
the decrease of pain thresholds55 as well as the analgesic 
tolerance to morphine56,57 and the resistance to morphine 
dependence.58 Thus, it is possible that the diabetic animals 
would be expected to be tolerant to the analgesic effects of 
exogenous opiates.

It was shown that left frontal cathodal and anodal tDCS 
in the left frontal cortex with the intensity of 0.2 milliamps 
each day for 20 minutes in 2 consecutive days did not 
alter memory formation by itself, while it could restore 
memory impairment induced by STZ. Several studies have 
shown that tDCS by changing membrane potential causes 
changes in neuronal activity and thereby affecting memory 
and learning.59,60 tDCS induces LTP that is involved in 
learning and memory establishment.60,61 LTP needs to 
activate NMDA receptors and brain-derived neurotrophic 
factor (BDNF).  tDCS in vivo increases BDNF receptor 
phosphorylation and increases its synthesis62 which can 
help to form dendritic and neuronal sprouts.29 The tDCS 
also activates NMDA receptors whose effect is dependent 
on intracellular calcium, and tDCS with an increased 
level of intracellular calcium enhances the effects of these 
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receptors.60,63,64 The study showed that dextromethorphan 
as an NMDA receptor antagonist prevented the effects of 
both cathodal and anodal tDCS showing the involvement 
of NMDA receptor in neuroplasticity induction.61 STZ 
changes the calcium influx and NMDA expression and 
induces apoptosis which accordingly can be considered as 
a possible explanation of the way it affects memory.

There are studies showing that both anodal and cathodal 
tDCS lead to increased cerebral blood flow (CBF) during 
the stimulation phase.65,66 Binkofski and colleagues showed 
that the short-term stimulation of neuronal activity 
increased glucose uptake in the brain, which was probably 
in response to the increased energy of the stimulation.67 
So, given that STZ and diabetes reduce blood flow and 
brain glucose,13 tDCS with increased CBF and increased 
glucose uptake facilitates the metabolic activity of neurons 
and reduces their apoptosis.66 Although some studies 
have suggested that cathode has inhibitory effects on 
locomotor function and learning by inhibiting stimulation 
and decreasing neuronal activity in the cortex,68,69 some 
studies have shown that cathodal stimulation facilitates 
synaptic plasticity, working memory and learning skill and 
the reduction of neuronal damage in the hippocampus, 
possibly via some metabolic changes including an increase 
in BDNF which specifically induces long-term changes 
in cortical plasticity.62,70,71 The contradictory results in 
the studies done on tDCS is probably due to the different 
methods of stimulation, intensity, duration, location and 
size of the electrodes which are all important variables in 
deciding the effects of tDCS71 in such a way that in the rat 
stroke model the repetition of the stimulation, instead of a 
single stimulation, has improved motor function and the 
extraction of inflammatory and regenerative processes.33 
The effect of tDCS on brain may expand to other regions 
and the stimulation of brain regions may lead to massive 
changes in the brain in such a way that the cortex and 
subcortical regions near the stimulated region may be also 
affected by tDCS.36,72

Some studies have reported the analgesic effects of 
tDCS,73 however, in our study, tDCS stimulation had 
no significant effect on the pain threshold induced by 
STZ. Our study shows that the deactivation of D1 and 
D2 dopamine receptor by SCH23390 and sulpiride can 
respectively alter the restoration effect of left frontal anodal 
but not cathodal tDCS on STZ-induced amnesia. Also, 
other studies have shown that tDCS functions through 
neurotransmitters and in human and animal studies tDCS 
improved Parkinson’s symptoms.34,74,75 On the other hand, 
different areas of the cerebral cortex, including sensory, 
motor, and the associated areas send descending routes 
to subcortical regions such as the basal ganglia.76,77 These 
descending routes facilitate the release of dopamine in the 
subcortical regions. Given the fact that the stimulation 
is performed in the cortex and dopamine has a role in 
facilitating movement and cognition as well as in learning 

by inducing neuroplasticity, it is accepted that tDCS, 
especially anodal tDCS, directly or indirectly, increases 
extracellular levels of dopamine in the cortex and sub-
cortex in particular by facilitating the neural stimulation 
in the cortex.29,78
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