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Abstract
Ordinary linear regression (OLR) is one of the most common statistical techniques used in determining the association between the 
outcome variable and its related factors. This method determines the association that is assumed to be true for the whole study area – a 
global association. In the field of public health and social sciences, this assumption is not always true, especially when it is known that 
the relationship between variables varies across the study area. Therefore, in such a scenario, an OLR should be calibrated in a way to 
account for this spatial variability. In this paper, we demonstrate use of the geographically weighted regression (GWR) method to account 
for spatial heterogeneity. In GWR, local models are reported in which association varies according to the location accounting for the 
local variation in variables. This technique utilizes geographical weights in determining association between the outcome variable and its 
related factors. These geographical weights are relatively large (i.e. close to 1) for observations located near regression point than for the 
observations located farther from the regression point. In this paper, we demonstrated the application of GWR and its comparison with 
OLR using demographic and health survey (DHS) data from Tanzania. Here we have focused on determining the association between 
percentages of acute respiratory infection (ARI) in children with its related factors. From OLR, we found that the percentage of female 
with higher education had the largest significant association with ARI (P = 0.027). On the other hand, result from the GWR returned 
coefficients varying from -0.15 to -0.01 (P < 0.001) over the study area in contrast to the global coefficient from OLR model. We advocate 
that identifying significant spatially-varying association will help policymaker to recognize the local areas of interest and design targeted 
interventions.
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Introduction
In the field of public health, geographic information 
system (GIS) is increasingly being acknowledged and 
utilized as one of the vital tools in investigation of spatial 
patterns.1 GIS can be defined as a framework for automatic 
capture, storage, retrieval, analysis and visualization of 
spatial data.2 Identifying that health related events are 
clustered within certain geographical location is necessary 
for the cost-effective and efficient distribution of health 
resources. In the classic epidemiological triangle of host, 
agent and environment, place is an axiomatic variable of 
environment. Tobler’s first law of geography, “Everything is 
related to everything else, but near things are more related 
to than distant things”3 provides the central framework 
of many geospatial statistics (i.e. spatial autocorrelation, 
spatial heterogeneity, etc). For example, attributes like 
temperature, climate, household income measured at 
a location are neither fixed nor changes drastically from 
place to neighboring place, but rather it progressively 
changes over space. 

In determining the association between exposure and 
the continuous type of outcome variable, ordinary linear 
regression (OLR) is the most common statistical method 

used. This method relies on certain assumptions (i.e. 
normality, homogeneity, and independence of residuals) 
that should be held by the data to determine the unbiased 
estimate. Theoretically, such global models (see equation 
1 of online Supplementary file 1, Section A) can provide 
reliable information in a situation if there is no variation 
across the study area. However, in the field of public health, 
such assumptions are not always true, especially when 
it is known that the variable varies across the study area 
(i.e. spatially non-stationary). Furthermore, in statistics, 
it is not uncommon that all observations are given equal 
importance. But in some scenarios, it might not be 
appropriate to treat all observations equally and therefore 
weight of each observation should vary. These weights can 
depend on the probability of sample selection, probability 
of receiving treatment (propensity score)4 and geographical 
distances. Here, the objective is to present an expository 
research to demonstrate the use of geographically weighted 
regression (GWR) analysis. 

 
Brief Note on Geographically Weighted Regression
The GWR, developed by Fotheringham and Brunsdon,5 
is a locally linear, non-parametric estimation technique for 
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capturing spatial variations of the regression coefficients. 
Suppose we have a set of observations from certain number 
of cases on a set of explanatory variables. This is a standard 
data set that can be used for OLR modeling. Now, suppose 
that in addition to this, we also have a set of geographical 
location for each case. In this case, we can extend the OLR 
framework (equation 1 of Supplementary file 1, Section 
A) by incorporating geographical information that allows 
local rather than global estimation. In this sense, GWR is 
an extension of weighted regression, where the weights are 
defined by the geographical distance between observations 
and a new regression is run at each data point by scooping 
a sub-set of data. This allows parameter estimates to vary 
over the study area. The equation 2 of Supplementary file 
1 (Section A) produces a continuous surface of parameter 
values with an inherent assumption that coefficients 
are deterministic functions of geographical (i.e. spatial) 
information within the model. These estimated 
coefficients at a given location can be mapped to reveal 
non-stationarity of the regression process. 

One of the most important elements in implementing 
GWR is calibrating the model by a kernel regression 
method. Various weighting systems (kernel functions) have 
been proposed in the literature.5-7 GWR uses a spatially-
varying kernel function that is more intuitive in its 
application since it is based on the following assumptions: 
a) observations near the index location have more 

influence on the estimation of parameter than do 
observations situated farther away from that index 
location, and

b) data points may not be distributed systematically with 
an equal distance across the study area.

Considering these two points, each local regression is 
based on a subset of data points located within specified 
distance. Fotheringham and Brunsdon5 proposed using 
distance-weighted windows with each window consisting 
of certain number of nearest data points in which weight 
of each data point decreases continuously as the distance 
(i.e. bandwidth) between two points increases. Choosing 
the optimal size of the bandwidth is more important 
than selecting weighting function (discussed below). 

For specifying the spatially-varying kernel function, an 
adaptive (varying) distance was applied where the numbers 
of local data points are fixed within the search window 
(i.e. bandwidth). Adaptive kernel scheme was used as it 
is more suitable when the units of analysis are irregularly 
spread across the study area (Figure 1). To summarize the 
weighting mechanism, Wij in equation 3 of Supplementary 
file 1 (Section A) is a weighting scheme that is conditioned 
in such a way that data points proximal to an index location 
receives larger weights which monotonically decreases 
towards the distal part of the window and ultimately 
reaching zero for observation just outside the window. 

Application of Geographically Weighted Regression
In this section, we will demonstrate application of 
GWR using various packages in R. For simplicity, only 
important outputs are tabulated and significant spatial 
variation in the estimated local βs and their associated p 
values are shown by mapping. Also, see Supplementary file 
1 (Section B) for R code that is written in Consolas font 
type to differentiate it from the general text. 

Materials and Methods
To demonstrate the application and comparison of 
GWR with OLR, we analyzed the data from Tanzania 
Demographic and Health Survey (DHS) – 2015-2016.8 
In this survey, a two-staged sampling method was 
implemented in a way that final sample were representative 
at national level, sub-national level, rural and urban areas. 
All urban and rural areas were divided into smaller areas, 
known as Enumeration Area (EA). Within each EA, list of 
household served as the sampling frame for the selection 
of household for the second stage. In second stage of 
sampling, fixed number of households was selected through 
systematic sampling technique. A detailed note on DHS 
sampling technique can be found in the Supplementary 
file 1 (Section A) of Tanzania DHS report.8 A nationally 
representative sample of about 13 400 households was 
selected, and with more than 90% of response rate, 
13 000 women were interviewed. The survey collected 
detailed information relating to demographic, child health 

Figure 1. GWR with Adaptive Spatial Kernels (adapted from Fotheringham and Brunsdon5).
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care and GPS coordinates from each EA. We extracted 
the information regarding episode of acute respiratory 
infection (ARI) from every mother with a child aged 0–59 
months. The data was then exported to Esri ArcGIS 10.1 
software, where data table was first merged with the DHS 
clusters and then aggregated at district level (n = 168). 
Beside the outcome variable, following seven explanatory 
variables were included in the model:
1. Percentage of mothers who belong to poor 

socioeconomic status in a district
2. Percentage of mothers residing in a rural area 
3. Percentage of mothers who have completed secondary 

or higher education 
4. Percentage of fathers who have completed secondary 

or higher education 
5. Percentage of mothers who are not working
6. Percentage of mothers who has a girl child 
7. Percentage of mothers who has a child aged between 

48–59 months
Once the data is loaded in R, we can now run GWR to 

determine the association between percentage of mother 
whose child had an episode of ARI and seven explanatory 
variables. 

Geographically Weighted Regression
As mentioned earlier, GWR is based on a framework in 
which kernel must be identified with an optimal size of 
the bandwidth. Bandwidth of a kernel can be user-defined 
or calibrated by an automatic process such as, cross-
validation (CV) score or corrected Akaike Information 
Criteria (AICc). The AICc takes into account the different 
number of degrees of freedom in different models so 
that their relative performances can be compared more 
accurately. A model with a smaller AICc than another is 
considered to be a ‘better’ model. For this analysis, we 
used AICc-based methods using bw.gwr function from the 
GW model package. This function returns the number of 
nearest neighbours that will be used for local regression 
models. We found that model will be optimized with the 
smallest AICc by using 155 neighboring districts with 
highest weight assigned to the district which is located 
in the proximity to the index district. After obtaining 
bandwidth, we can feed this to the function gwr.basic 
to run the final model along with other specifications 
(Supplementary file 1, Section B). 

Results
The descriptive statistics of all the explanatory variables of 
ARI in Tanzania are presented in Table 1, including the 
dependent variable. On average, there were almost 5% of 
the DHS cluster have a child having ARI in a district. The 
percentage of DHS cluster with an ill child ranges from 0% 
to 33% with relatively large standard deviation, indicating 
large variation within the study area. From Table 1, it can 
be seen that the range of percentage of poor household 

Table 1. Summary of Demographic Variables of Acute Respiratory Infection

Variables Min Max Mean SD

% of ARI 0 33 5 6

% of poor 0 100 60 32

% of rural 0 100 74 34

% of female with higher education 0 100 21 19

% of male with higher education 0 82 20 18

% of mother not working 0 78 18 15

% of girl child 5 80 49 8

% of child aged between 48-59 months 5 50 19 7

Abbreviation: ARI, acute respiratory infection.

is wide with large standard deviation; consequently the 
spatial distribution of percentage of DHS cluster with 
poor household in Tanzania is widely varying without an 
observable pattern. The output of GWR analysis creates 
and stores both OLR and GWR. Table 2 shows the output 
of fitted OLR model. The F statistics (F = 3.05, P value = 
0.005) indicate that the overall regression was significant. 
The variable % of female with higher education’ had largest 
significant association with ARI (P value = 0.027) with 
one percent increase in the percentage of mothers who 
have completed secondary or higher education reduces 
the percentage of ARI in a given district by nearly seven 
percent. Similarly, percentage of ARI in a given district has 
a significant negative association with the percentage of 
mothers living in a rural area (P value = 0.014), and other 
variables are statistically insignificant. This OLR model 
identifies the ‘global’ relationship between exposure and 
explanatory variable, and it fails to report the local variation 
in the magnitude and direction of such relationship. 
To address the issue of multicollinearity, last column of 
table 2 reports the variance inflation factors (VIFs) for all 
explanatory variables are less than 5, indicating that the 
variables included in OLR are reasonable free from the 
effect of multicollinearity.

On the other hand, GWR produces estimates for each 
location and therefore, number of local estimates is equal 
to the number of location. Table 3 presents the summary 
including minimum, maximum, 1st and 3rd quartile and 
median values of local estimates for all seven explanatory 
variables and intercept. It is evident from Table 3 that 
coefficients from GWR can vary from negative to positive 
association, explicitly showing that the relationship 
between outcome and explanatory variable is more complex 
than what appeared in OLR. Using the Monte Carlo 
technique, the result of randomization test on each of the 
coefficients is report in the last column of Table 3. It can 
be seen that the coefficients for intercept, % of poor, % of 
rural, % of female with higher education, and % of female 
children are significantly varying over the study area. For 
simplicity, we are only reporting coefficient and associated 
P value for one variable. Figure 2a gives a reflection of 
non-stationarity in the association between percentages 
of ARI and percentage of mothers who have completed 
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secondary or higher education. Thus, GWR model does 
not yield a single interpretation on the association between 
dependent variable and explanatory variables. Looking at 
Figure 2b, we can identify that the observed association 
is not statistically significant in the Northwest region. 
Furthermore, to justify application of GWR, we calculated 
Moran’s I for the residuals from GWR analysis and the 
pattern does not appear to be significantly different than 
random pattern (P value = 0.422).

Discussion
In this research, we demonstrated the application and 
comparison between OLR and GWR to determine 
the association between percentages of ARI at a district 

level with its related factors. The core element of GWR 
methodology is the use of distance weighted sub-sample 
of the data to produce locally linear regression estimates 
for each data point.9 We illustrated that the associations 
between the dependent variable with its explanatory factors 
vary over the study area. This diversification in relationship 
can be attributed to the following two possibilities: Firstly, 
the spatial non-stationarity in the relationship between 
outcome and input variables is due to the fact that some 
relationships are naturally varying across space. Ha H, and 
Tu W. demonstrated spatially varying relationship between 
altitude and suicide rate in the United States of America.10 
Reich et al obtained individual-level explanatory variables 
with spatially varying associations with activity level in 

Table 2. Statistical Result of the OLR Model for Percentage of ARI

Coefficients Estimate SE
95% CI

P Value VIF
LL UL

Intercept 0.07 0.03 0.01 0.13 0.013

% of poor -0.02 0.03 -0.07 0.03 0.506 4.24

% of rural -0.05 0.02 -0.08 -0.01 0.014 2.38

% of female with higher education -0.07 0.03 -0.12 -0.01 0.027 1.93

% of male with higher education -0.01 0.04 -0.06 0.08 0.753 2.42

% of mother not working -0.03 0.03 -0.07 0.02 0.302 1.09

% of girl child 0.06 0.04 -0.02 0.13 0.122 1.08

% of child aged between 48–59 months 0.03 0.06 -0.09 0.15 0.595 1.07

Abbreviations: OLR, ordinary linear regression; ARI, acute respiratory infection; SE, standard error; LL, lower limit; UL, upper limit; VIF, variance inflation factor.

Table 3. Summary Statistics of GWR Model for Percentage of ARI

Coefficients
GWR Estimates

Min. 1st Quartile Median 3rd Quartile Max. P Value*

Intercept 0.03 0.06 0.09 0.12 0.11 0.047

% of poor -0.05 -0.04 -0.02 0.01 0.05 < 0.001

% of rural -0.10 -0.07 -0.05 -0.03 -0.03 < 0.001

% of female with higher education -0.15 -0.09 -0.09 -0.04 -0.01 < 0.001

% of male with higher education -0.04 -0.01 0.02 0.03 0.05 0.969

% of mother not working -0.07 -0.05 -0.04 -0.04 -0.03 1.000

% of girl child -0.01 0.02 0.07 0.10 0.13 < 0.001

% of child aged between 48-59 months -0.09 -0.04 -0.01 0.04 0.11 0.194

Abbreviations: GWR, Geographically Weighted Regression; ARI , Acute Respiratory Infection.
* P value significant at 95% confidence level.

Figure 2. (a) Spatial Distribution of Adjusted Coefficients for the Percentage of Mothers Who Completed Secondary or Higher Education (b) and Their Associated 
P Value.

(a) (b)
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pregnant women.11 Such findings that people’s behavior 
have potential to vary over space is in concordance with 
the idea of importance of locality.12 This is one of the 
most important advantages of the application of GWR 
models where regions with ‘anomalous’ relationships are 
being highlighted and become focus for future studies.5 
Secondly, it has been demonstrated by past research that 
GWR analyses are prone to estimate extreme coefficients 
including sign reversals. The massively fluctuating 
coefficients can be a sign of over-fitting in the local models 
or presence of local multicollinearity. This issue has been 
narrated by Fotheringham and Brunsdon in the context 
of variance-bias trade off, in which smaller bandwidth 
produces the tighter fitting estimators and may also result 
in extreme coefficients.5 

Application of GIS in public health and epidemiology 
has profoundly improved the ability to analyze spatial data 
and generate spatially-varying etiological hypotheses. In 
most of the cases, epidemiological studies applying spatial 
analysis make use of an aggregated data incorporated 
within specific geographical boundary. In spite of the fact 
that such aggregation of an individual level data invariably 
results in loss of information, it also attains the propensity 
to investigate health related outcomes together with other 
additional data. In essence, GIS provides the ability to 
conduct repetitive tasks, rapid comparison of spatial data, 
handling large data set and voluminous outputs.1 

Implementing and analyzing spatial methods on 
public health data within certain administrative units 
requires consideration of the fact that observations may 
be autocorrelated (i.e. the occurrence of an event within 
a given administrative unit makes more probable the 
occurrence of an event in neighboring administrative units). 
This concept is well-known as spatial autocorrelation. In 
accordance with Tobler’s first law of geography,3 disease 
patterns and its related demographic and environmental 
variables demonstrate spatial clustering. Therefore, 
influence of neighboring administrative units has to be 
taken into account.13 In contrast to GWR, it is assumed 
in OLR that the observations have been selected randomly 
and cases are not spatially clustered. Nevertheless, when 
spatial autocorrelation is present, then the coefficients 
obtained from OLR would be biased because the area with 
higher concentration of events will have larger impact on 
the model estimate and will return overly precise estimates. 

Inference for Policymakers
The outputs of this analysis gave richer understanding of 
the spatial epidemiology of the characteristics affecting 
ARI in Tanzania. Our expectation from these results is that 
such map will guide policymakers to direct interventions 
that are spatially and epidemiologically relevant to the 
region. This theoretical assumption is nevertheless limited 
by the fact that people migrating from one vulnerable 
region to another may change the regional profile of the 

relationship observed in GWR analysis.14-16 Furthermore, 
the epidemiological implication of such a map is that 
the patterns observed can be related to possible (local) 
association with ARI in the study region. This offers 
significant leads for further investigation at the local level. 
Another inference that can guide policymakers, which 
emerges from this result is that the association between 
ARI and significant explanatory variables in a district is 
varying across the study area. Consequently, health policy 
directed towards reducing the burden of ARI should focus 
on local association and local influential demographic 
variables. In this view, regional health policy should build 
context-specific and integrated disease lowering policy 
should be designed for reducing the prevalence of ARI.

Recommendation for Researchers
There are various reasons to adopt local regression 
framework (such as GWR): Some association between 
dependent and independent variables are naturally 
varying across space. In such a case, coefficient from a 
global model may actually be a model misspecification.17 
The GWR model is a disaggregation of global models and 
the results are location-specific. GWR can be used as a 
model diagnostic to identify spatially varying associations. 
With this context, GWR can help to answer the question, 
“Does the association vary across space?” If the association 
does not vary across space, the global model should be 
appropriate specification for the data. Furthermore, it 
should be noted that GWR-facilitated local regression 
works reasonably well with binary,18,19 count,5,20 and 
discrete-response21 data sets.

Limitation of the GWR Method
Like any other research that employs spatial analyses, this 
study can potentially suffer from modifiable areal unit 
problem (MAUP). MAUP arises when data gathered and 
subsequently analyzed may vary from the analysis conducted 
at an alternative modifiable unit.22,23 Another important 
concern that needs to be addressed is multicollinearity 
within explanatory variables. In application of GWR 
methods, collinearity potentially becomes a more 
serious concern even if it is absent in the global model.24 
Therefore, it is necessary to conduct collinearity diagnosis 
(such as local VIFs for each independent variable and local 
condition number) in GWR analysis. In conclusion, in 
this paper, we have shown the application of GWR and 
compared the output from it with OLR. We illustrated 
that the associations between the dependent variable 
with its explanatory factors vary over the study area. The 
potential use of GWR is to identify such association at 
local level which will in turn assist policymakers to focus 
on a specific area to design health programs. Furthermore, 
when a health policymaker aims to reduce the burden of 
health outcome, GWR can show a researcher the most 
influential and deterministic factor working at local level 
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that cannot be observed by OLR modeling. 
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