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Abstract
Background: Recently, we have reported mutations in LARP7 gene, leading to neurodevelopmental disorders (NDDs), the most 
frequent cause of disability in children with a broad phenotype spectrum and diverse genetic landscape. 
Methods: Here, we present two Iranian patients from consanguineous families with syndromic intellectual disability, facial 
dysmorphism, and short stature. 
Results: Whole-exome sequencing (WES) revealed a novel homozygous stop-gain (c.C925T, p.R309X) variant and a previously 
known homozygous acceptor splice-site (c.1669-1_1671del) variant in LARP7 gene, indicating the diagnosis of Alazami syndrome. 
Conclusion: These identified variants in patients with Alazami syndrome were consistent with previously reported loss of function 
variants in LARP7 and provide further evidence that loss of function of LARP7 is the disease mechanism.
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Introduction
Neurodevelopmental disorders (NDDs), the most frequent 
cause of disability in children with complex genotype-
phenotype correlations, are the main reasons for most 
referrals to health services. Alazami syndrome (ALAZS; 
MIM 615071) is a rare syndromic developmental disorder 
characterized by short stature, and distinct facial and skeletal 
features, with the major hallmark of neurodevelopmental 
delay and intellectual disabilities.1 This syndrome is caused 
by biallelic homozygous or compound heterozygous 
mutations in LARP7 (La Ribonucleoprotein domain 
family member 7), located on chromosome 4q25, that 
was originally identified by Najmabadi et al, in 2011.1,2 
LARP7 mutations were identified in 2008 by He et al,3  
and in 2011 imputed as a new causative gene involved in 
autosomal recessive intellectual disability by Najmabadi 
et al.1,4 

LARP7 acts as a negative regulator of polymerase II genes, 
the crucial parts of transcription/translation regulation. 
Functional studies have shown that LARP7 is ubiquitously 
expressed in all tissues with an exceptional increase in the 
brain.2,3 The LARP7 protein with 582 amino acids (aa) 
acts as a stabilizing chaperone molecule of an abundant 
non-coding RNA (ncRNA) 7SK,2,4 negatively impacting 

the expression of a wide variety of other genes through 
its inhibitory effect on positive transcription elongation 
factor b (P-TEFb), as well as competing with HMGA1-
mediated transcriptional regulation.5-7

LARP7, MEPCE, and HEXIM1/2 proteins, whose 
functions are critical in neuronal development, and 7SK 
non-coding RNA compose 7SK snRNP which plays 
important roles in regulating both RNAPII-mediated 
mRNA elongation and small nuclear/nucleolar RNA 
synthesis.8,9

Although it was assumed that LARP7 deficiency 
enhances cell proliferation due to increasing the cellular 
activity of P-TEFb, it has been indicated that Larp7 
knockdown in embryonic stem cells (ESCs) is associated 
with growth failure. Larp7 deficiency stimulates ESCs 
differentiation instead of cell divisions via down regulation 
of Lin28, a positive regulator of organismal growth. This 
effect of Larp7 deficiency could explain the molecular 
etiology of primordial dwarfism seen in patients with loss 
of function mutations in LARP7.10,11

Here, we present clinical and molecular findings in 
two Iranian patients from consanguineous families with 
homozygous mutations in LARP7 gene. 
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Materials and Methods
Clinical Report
Two patients were referred to the Genetics Research 
Center (GRC), at the University of Social Welfare and 
Rehabilitation Sciences (USWR), Tehran, Iran, as rare and 
undiagnosed cases for further molecular investigation. 

Patient I was a 15-year-old male born to healthy, 
consanguineous parents. He was born after an 
unremarkable pregnancy with C/S delivery and neonatal 
period. His birth weight was 3120 g, height was 49 cm, 
and occipitofrontal head circumference (OFC) was 34 cm. 
His early development was normal and he started sitting at 
8 months and standing at 10 months but later developed 
psychomotor delay. He had delayed speech development 
and was noted to have progressive spasticity and hypertonia 
during infancy and he could not walk without assistance. 
He had a history of seizure, which started at 2 years of age 
and was controlled with medication. At 4 years, he had a 
heart operation to correct a congenital atrial septal defect. 
On examination at 15 years, his height was 128 cm (–5.4 
SD), his weight was 17 kg (–3.3 SD) and OFC was 48 cm 
(–4.6 SD). He had short stature, microcephaly, thin body 
and ataxic gait. He had facial dysmorphism including a 
broad forehead, wide nasal bridge, broad nose, malar 
hypoplasia, retrognathia, full lips and low set protruding 
ears. He had spasticity, hyperreflexia and scoliosis. Brain 
MRI at the age of 15 years demonstrated an increased 
signal in periventricular white matter while EEG did not 
show any abnormal epileptic waves. Cognitive status, 
evaluated using WAIS-IV, showed an IQ of 30, in the 
range of severe intellectual disability (ID) (Figure 1).

Patient II was a 25-year-old woman, the second child 
of healthy consanguineous parents. She was born at 
term after an uneventful pregnancy with normal vaginal 
delivery. She had normal birth OFC and height, but 
a low birth weight that had not been documented. She 
revealed severe early psychomotor developmental delay 
and started sitting, standing and walking at the age of 24 
months. She had delayed speech development and her first 

words were at 3 years. She had no history of seizure. She 
developed a bilateral cataract at the age of 25 years. On 
examination, at 25 years, her height was 140 cm (–3.6 
SD), her weight was 30 kg (–4.1 SD), and OFC was 53 
cm (–0.5 SD). She had proportional short stature and 
thin body. She had facial dysmorphism, including a broad 
forehead, wide nasal bridge, broad nose, malar hypoplasia, 
short philtrum, prognathism, full lips and low set ears. 
She walked normally with no ataxic or spastic gait and 
her extremities were normal. Cognitive status, evaluated 
using WAIS-IV, showed an IQ of 40, in the range of severe 
ID; she had stereotypic movement and speech, anxiety and 
self-injurious behavior. In laboratory testing, she showed 
hypercholesterolemia, normal cortisol and decreased 
adrenocorticotrophic hormone level (Figure 2).

The study was approved by the Ethics Committee of 
the USWR and written informed consent was obtained 
from the parents of the two patients for further molecular 
analysis and to take photographs of the patients. After 
obtaining an informed consent, complete clinical 
examination and genetic counseling were performed.

Whole-Exome Sequencing 
A 10-mL sample of whole blood was collected from each 
patient using EDTA as anticoagulant. Genomic DNA was 
extracted, using the salting-out method, and the integrity 
and quantity of the extracted DNA were determined. 
Exome capture of the two proband’s DNA was 
accomplished using the Agilent SureSelectXT2 kit (Version 
6) (Agilent Technologies, Inc., Santa Clara, CA), followed 
by paired-end sequencing on Illumina HiSeq2500’s flow-
cell (Illumina Inc., San Diego, CA). Mapping FASTQ 
files to the reference human genome (human genome 19 
version, Genome Reference Consortium GRCh37) was 
performed by applying the Burrows-Wheeler transform 
algorithm.12 The Picard toolkit and GATK package were 
used for trimming, filtering, base recalibration, coverage 
determination and insertion/deletion realignment of the 
SAM files, and then variants were called using the Unified 

Figure 1. Symptoms of Patient I. A) Facial features (wide nasal bridge, broad nose, retrognathia, full lips and low set protruding ears). B) Motor developmental 
delay, skeletal problems. C and D) Skeletal problems. E) Broad forehead. F) Skeletal problems. G) Pedigree of the family.
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Genotyper module of the GATK package.13-15 ANNOVAR 
tool was then used to annotate called variants.16 Variants 
with global minor allele frequency (MAF) ≤0.01 were 
considered for more filtration using available databases 
including 1000 Genome Project, ESP6500, Genome 
Aggregation Database (gnomAD), Exome Aggregation 
Consortium (ExAC), Kaviar, and ABraOM database.17-21 
Considering the consanguineous background of the two 
families, all synonymous, intronic, and heterozygous 
variants, were filtered out. The variants that have been 
presented in homozygous status in gnomAD and Iranome 
(Iranian normal control database, http://www.iranome.
com/),22 and predominantly predicted to be benign, 
using bioinformatics tools including SIFT, Mutation 
Taster, FATHMM MKL, Mutation Assessor, Polyphen 
2, and CADD, were filtered out. Genotype-phenotype 
correlation, VarSome, and American College of Medical 
Genetics and Genomics (ACMG) guidelines were used 
for the identification of causal variants which were further 
validated by conventional Sanger sequencing and co-
segregation analysis in the available family members.23,24 
In addition, other bioinformatics tools, such as NetGene2 
Server and Human splicing finder 3.1, were utilized 
to assess the consequence of splice-site mutations in 
silico.25,26 InterPro (https://www.proteomicsdb.org) and 
STRING databases (string-db.org) were respectively used 
to evaluate the putative structural changes and functional 
characterizations of the LARP7 protein.27,28

Results
Diagnosis by Whole-Exome Sequencing 
Whole-exome sequencing (WES) of patients in the 
studied families (8900195 and 96000005) revealed 

two homozygous pathogenic variants in LARP7 
(NM_016648). A novel stop-gain pathogenic variant 
defined as chr4:113568633C>T, c.C925T (p.Arg309X) 
in exon 7 of LARP7 in patient I of family 8900195, and 
a previously known pathogenic deletion variant, affecting 
the splice acceptor site, defined as chr4:113578398 
TTTAG>T, c.1669-1_1671del in intron 12 of LARP7 in 
patient II of family 96000005, were identified.

Sanger sequencing of the candidate variants in patients 
and their parents confirmed the homozygous status of the 
variants in the patients and the heterozygous status of the 
variants in their parents (Figures 3 and 4).

A schematic representation of the protein domains of La-
related protein 7, encoded by LARP7, with the positions 
of the two variants identified is shown in Figure 5.

Discussion
The novel homozygous variant identified in patient I 
(c.C925T, p.R309X) was a transition substitution of T 
to C, residing at exon 7 of LARP7. This variant causes 
a premature termination codon (PTC) leading to the 
C-terminus truncation of 273 amino acids remaining with 
309 amino acids, which is roughly about a half-length 
of the normal protein (582 aa). The aforementioned 
mutation at Arg309 would cause significant structural 
loss at the C-terminal end of the protein, including RNA 
Recognition Motif 2 (RRM2), which is needed for specific 
binding to 7SK and P-TEFb (Figure 5). Nevertheless, the 
presence of the PTC in the transcript probably causes early 
mRNA degradation by nonsense-mediated RNA decay 
(NMD), in order to prevent aberrant protein synthesis.

In patient II, a 4-bp intronic deletion (c.1669-
1_1671del) was found, which affects the acceptor splicing 

Figure 2. Symptoms of Patient II. A and B) Facial features of the proband (broad forehead, wide nasal bridge, broad nose, malar hypoplasia, short philtrum, 
prognathism, full lips and low set ears). C) Short status. D) Skeletal problems (hand deformity). E) Pedigree of the family.

http://www.iranome.com/
http://www.iranome.com/
https://www.proteomicsdb.org
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site adjacent to exon 13. In this patient, the distinct AG 
dinucleotide at the acceptor splice-site of intron 12 was 
deleted; therefore, this intron could not be spliced out 
properly. In silico prediction tools (such as NetGen2 
and Human Splicing Finder) predicted the potential 
pathogenic effect of the c.1669-1_1671del variant on 
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Figure 3. DNA Sequence Chromatograms Showing Variant (c.C925T, 
p.R309X) in Heterozygous Status in Normal Individuals (Mother and 
Father), and in Homozygous State in the Affected Individual (Patient I) of 
Family 8900195.

Figure 4. DNA Sequence Chromatograms Showing Variant (c.1669-
1_1671del) in Heterozygous State in Normal Individuals (Mother and 
Father) and in Homozygous State in the Affected Individual (Patient II) of 
Family 96000005

Figure 5. Schematic Representation of the Protein Domains of La-Related Protein 7, Encoded by LARP7, with Positions of the Two Identified Variants, Including 
a Novel Stop-Gain (c.C925T, p.R309X) and an Acceptor Splice-Site (c.1669-1_1671del) Variant (LAM, Lupus Antigen Motif; RRM1, RNA Recognition Motif 1; 
RRM2, RNA Recognition Motif 2).
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splicing through a loss of the acceptor splicing site.
The stop-gain variants and deletions variants affecting 

the splice-sites, two variants reported in this study, would 
result in truncated proteins. Such protein-truncating 
variants (PTVs) are usually subject to nonsense-mediated 
RNA decay (NMD), which prevents production of 
truncated proteins, leading to complete loss of function of 
that copy of the protein.29 Based on an extensive literature 
review, we could make the assumption that our identified 
pathogenic PTVs are predicted to trigger the NMD process 
and the consequent loss of function of LARP7.22-30 As the 
presence and stable attachment of LARP7 to the 7SK 
small nuclear RNA are crucial for the function of the 7SK 
snRNP complex,6,31,32 it could be concluded that a non-
functional 7SK snRNP complex due to the mentioned loss 
of function effects of the variants, is responsible for the 
clinical manifestations observed in our patients.

The clinical features of Alazami syndrome were first 
described in 2012 by Alazami et al in a study of nine 
patients from a large multiplex Saudi family. All patients 
in that study presented with short stature, distinctive 
facial features, motor developmental delay and intellectual 
disabilities.2 More typical phenotypic features of Alazami 
syndrome have been reported more recently, including 
more distinctive facial features such as triangular face, 
prominent forehead, deep-set eyes, sparse eyebrows, broad 
nose, widely spaced teeth and wide mouth, and also some 
behavioral problems such as anxiety and hypersensitivity to 
auditory stimuli.7,31 Ivanovski et al have recently provided 
a comprehensive review of the most common features of 
Alazami syndrome, along with a case report with childhood 
thyroid carcinoma besides typical features of Alazami 
syndrome.33 Regarding the phenotype expansion, our 
patients presented some less common symptoms including 
heart abnormalities (moderate mitral regurgitation), and 
intractable seizure and presented bilateral cataract as a new 
symptom. 

To date, 24 patients from 12 families have been reported 
to be affected.7,31,33-35 After Alazami et al, Najmabadi 
et al have reported the highest number of patients with 
mutation in LARP7, including 6 patients from four 
Iranian families.1,2,4,36,37 Altogether, the four Alazami cases 



 Arch Iran Med, Volume 23, Issue 12, December 2020                                                        846

Kazemi et al 

previously reported by our team, and the two patients 
reported here, are from consanguineous families.38

Furthermore, all the previously reported LARP7 variants 
are loss of function variants including mainly frameshift 
variants, donor splice site variants, intronic variants and 
nonsense variants.1,2,4,7,31,33-37,39 Here, we present two other 
pathogenic loss of function variants, one novel stop-gain 
variant and one acceptor splice-site variant, which testify 
to the notion that complete loss of function of LARP7 is 
likely the disease mechanism. 

The present study described the clinical phenotypes and 
molecular findings in two Iranian patients with Alazami 
syndrome, expanding the genotypic and phenotypic 
spectrum of this syndrome. Next generation sequencing 
in all its different forms has become a powerful tool 
in solving cases with rare genetic disorders, including 
undiagnosed cases with suspected Mendelian roots. 
Applying high-throughput DNA sequencing technology 
such as WES would shed light on new variants and 
delineate the genotype-phenotype correlations in clinically 
and genetically heterogeneous diseases such as Alazami 
syndrome. Further functional studies are necessary to 
improve our understanding of the functional impact of 
PTVs and the molecular mechanisms which contribute 
to the pathogenicity of such causative variants in LARP7. 
Phenotype heterogeneity will be further defined with 
future reports of different Alazami cases.
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