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Introduction
Congenital disorders of glycosylation (CDGs) constitute 
a heterogeneous group of inherited metabolic diseases 
characterized by defects in glycoprotein and glycolipid 
glycan synthesis and attachment. Over 160 CDG subtypes 
have been described,1,2 encompassing N-linked, O-linked, 
and hybrid N- and O-linked glycosylation, as well as 
lipid and glycosylphosphatidylinositol (GPI) anchor 
biosynthesis abnormalities.3 The first CDG was identified 
by Jaeken and colleagues in 1980, affecting approximately 
1 in 20 000 individuals.3-5

Clinically, patients often present with a recognizable 
phenotype characterized by neurological and multisystem 
manifestations, which can complicate the diagnosis of 
CDG. The severity of PMM2-CDG varies widely, ranging 
from severe neonatal forms with a high mortality rate 
(approximately 20% within the first year of life) to milder 
presentations in adulthood.5-7 Neurological signs are 
the primary clinical feature of PMM2-CDG, affecting 
both the central and peripheral nervous systems. These 

neurological abnormalities may occur alone or alongside 
systemic abnormalities.2 

During infancy, the affected individuals frequently present 
with neurological deficits, including cerebellar hypoplasia, 
hypotonia, ataxia, and hyporeflexia, as well as strabismus. 
Additionally, failure to thrive, hepatic problems, and 
developmental delay are commonly observed.3,8 Hypotonia, 
ataxia, retinitis pigmentosa, seizure, intellectual disability 
(IQ 40‒70), stroke-like episodes, speech and movement 
impairments, peripheral neuropathy, coagulopathy, and 
skeletal abnormalities are common features in the affected 
children.3 Retinitis pigmentosa, myopia, joint contractures, 
non-progressive cognitive dysfunction, and peripheral 
neuropathy are common clinical findings in adolescents 
with PMM2-CDG.9 

PMM2-CDG results from mutations in the PMM2 
gene, located on chromosome 16p13.2, which encodes a 
246-amino acid protein. This gene is broadly expressed 
in both human and mouse tissues.10 As a member of the 
HAD-IIB phosphomutase subfamily within the larger 
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Abstract
Background: PMM2-CDG, also known as congenital disorder of glycosylation type 1a, is the most common N-linked glycosylation 
disorder, characterized by a wide range of neurological and multisystem manifestations. Understanding the genotype-phenotype 
correlations is essential for accurate diagnosis and patient management. This study aims to identify the genetic cause of PMM2-
CDG in an Iranian family with multiple affected members, and to analyze the genetic and clinical spectrum of the disorder through 
a comprehensive literature review. 
Methods: Exome sequencing re-analysis was performed to detect disease-causing variants in three affected siblings. Additionally, a 
literature review was conducted, analyzing 91 previously reported cases of PMM2-CDG to determine the most prevalent variants 
and associated clinical features.
Results: A novel splice site variant (c.640-9T > A) was identified alongside a previously reported missense mutation (c.647A > T; 
p.N216I) in the affected individuals. The literature review revealed that the most frequent PMM2 variants were p.R141H 
(28.8%), p.V231M (12.8%), p.N216I (6.4%), and p.V129M (5.8%), with 77.6% of mutations occurring in exons 5 and 8. The 
most common clinical findings included developmental delay, ocular abnormalities (hypertelorism, strabismus), muscular system 
defects (hypotonia, muscle weakness), neurological symptoms (abnormal MRI findings), cardiovascular involvement (pericarditis, 
pericardial effusion), and clotting disorders. 
Conclusion: We expect that our detailed clinical study will improve the genotype-phenotype interpretation of causal PMM2-CDG 
variants and the analysis of next-generation sequencing data, leading to clarification of the cause of complicated cases of rare 
diseases.
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HAD superfamily of hydrolases, PMM2 possesses a 
conserved alpha/beta core domain, a structural feature 
shared among homologs spanning bacteria, archaea, 
and eukaryotes.11 Structurally, PMMs are composed of a 
core domain (residues 1‒90 and 198‒262) that houses the 
active site with four conserved motifs, and a cap domain 
(residues 95‒194), which plays a role in enzyme function 
and stability.10,12,13 

PMM2 encodes a homodimeric cytosolic isomerase 
that catalyzes the conversion of mannose-6-phosphate 
to mannose-1-phosphate in the cytosol, with glucose 
1,6-bisphosphate serving as an activator.3,5,14 Mannose-1-
phosphate is an essential precursor for synthesizing GDP-
mannose and dolichol-phosphate-mannose, both of 
which serve as mannose donors in N-linked glycosylation 
pathways.5,15,16 N-linked glycosylation is an important 
post-translational modification that involves a variety of 
processes including protein folding, signaling, trafficking, 
protein stability, localization, cell adhesion, etc.17,18 
In addition to its extensive role in cellular functions, 
the importance of PMM2 is highlighted by a study 
demonstrating that targeted disruption of the PMM2 gene 
in mice results in early embryonic lethality.10,19

Enzymes responsible for catalyzing N-glycosylation 
are ubiquitously expressed throughout both developing 
and adult nervous tissue.18 Studies have demonstrated the 
vital role of N-glycosylation in both neurodevelopmental 
processes and the functioning of the mature brain.20 
N-glycosylation is essential for neuronal function, 
influencing various cell types including neurons, 
astrocytes, and microglia.20 Furthermore, fucosylated 
glycans, synthesized from GDP-mannose,21 play a crucial 
role in cognitive processes such as learning and memory.22 
These findings align with the clinical observation that 
almost all patients with PMM2-CDG exhibit neurological 
symptoms.

Here, we describe an Iranian family with three 
individuals affected by the rare congenital disorder of 
glycosylation type 1a, who have a compound heterozygote 
variant in the PMM2 gene; it is the third family with 
PMM2-CDG reported from Iran with a new nucleotide 
substitution. Our results further underscore the 
importance of a thorough and systematic re-evaluation 
of phenotypic descriptions, alongside using an up-to-date 
and reviewed pipeline for reanalysis of WES data.

Materials and Methods
An Iranian family (from Babol city, northern Iran) was 
previously referred to the Genetics Research Center (GRC) 
of the University of Social Welfare and Rehabilitation 
Sciences (USWR) for genetic investigation of intellectual 
disability, but the pathogenic variant(s) were not 
identified in our previous NGS investigation of the family. 
We performed a re-analysis study on the family, clinical 
re-examinations were conducted for affected individuals 
by a specialist clinician, and the clinical records were 
reviewed. Written informed consent was obtained from 

the parents of the patients and normal siblings. The study 
was approved by the Ethics Committee of the University of 
Social Welfare and Rehabilitation Sciences, Tehran, Iran. 
Peripheral blood samples were collected and genomic 
DNA was extracted using the salting-out protocol. 

Samples collected from the proband of the family 
underwent re-sequencing using the Agilent SureSelectXT 
Human All Exon V6 Kit (Agilent Technologies, Santa 
Clara, CA, USA), and sequencing was performed on 
Illumina NextSeq500 (Illumina, San Diego, CA, USA). 
Since the GATK platform was used in the previous analysis, 
in this re-analysis, in addition to aligning raw sequenced 
data against the human reference genome hg38/GRCh38, 
sorting, duplicate marking, base quality recalibration, 
and small variant SNV and indel calling were performed 
using the Illumina DRAGEN Bio-IT Platform V3. The 
generated VCF file was uploaded to Ilyome (https://www.
ilyome.com) for re-annotation and re-analysis. Variant 
filtering on the Ilyome platform was conducted by 
considering their quality (depth greater than 3) and allele 
frequency (less than 1% in gnomAD genomes, gnomAD 
exomes, Genoks, 1000 genomes, and TOPMED bravo 
databases). In the next step of variant filtering, variants 
including stop gained, frameshift, stop or start lost, 
transcript amplification, in-frame insertion and deletion, 
missense, protein-altering, and splice region variants with 
good coverage would remain for analysis. Variants were 
prioritized based on variant impact, inheritance patterns, 
phenotype compatibility, allele count in population 
databases (allele count for homozygous and heterozygous 
was 0 and less than 10, respectively), and in-silico 
prediction scores. Additionally, the analysis of variants 
involved the utilization of various databases, including 
Online Mendelian Inheritance in Man (OMIM, https://
www.omim.com), ClinVar (https://www.ncbi.nlm.nih.
gov/clinvar), Varsome (https://varsome.com), Franklin 
(https://franklin.genoox.com), and PubMed, as well as 
in-silico prediction tools such as SIFT, MutationTaster, 
REVEL, MetaRNN, CADD, dbscSNV, and SpliceAI (for 
splicing variants).

Furthermore, we conducted a comprehensive review of 
published studies reporting PMM2 variants and associated 
clinical data from 2017 to 2024 as this is a descriptive study 
aimed at investigating additional genotype-phenotype 
correlations. PubMed and Google Scholar were used as 
primary databases for this review. We excluded papers 
that reported solely clinical data, exclusively molecular 
data, or provided cohort-level data without individual 
patient clinical information.

Results
Family History and Clinical Presentation
The family had three affected siblings; two females (aged 
61 and 46 years) and one male (aged 68 years), born to 
unrelated parents but originating from the same village. 
All presented with developmental delay, microcephaly, 
severe intellectual disability, strabismus, short stature 

https://www.ilyome.com
https://www.ilyome.com
https://www.omim.com
https://www.omim.com
https://www.ncbi.nlm.nih.gov/clinvar
https://www.ncbi.nlm.nih.gov/clinvar
https://varsome.com
https://franklin.genoox.com
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(150 cm, 130 cm, and 145 cm, respectively), hypotonia, 
and spastic paraplegia. Hearing impairment and seizures 
were absent. The pedigree of the family is depicted in 
Figure 1A.

Patients’ Genotypes and Variant Description
Our study revealed compound heterozygous variants 
in the three affected siblings, comprising a previously 
reported missense mutation c.647A > T (p.N216I) and 
a novel splice site variant (c.640-9T > A) of uncertain 
significance. The electropherogram of c.640-9T > A 
and c.647A > T variants in the PMM2 gene for affected 
individuals and normal siblings is shown in Figure 1B. In-
silico prediction of the identified variants in the PMM2 
gene is illustrated in Table 1. The c.647A > T (p.N216I) 
variant was analyzed using multiple in-silico tools, 
revealing a consensus toward pathogenicity across most 
algorithms. MetaLR, MetaRNN, and MutPred classified 
the variant as pathogenic with strong confidence. 
REVEL and FATHMM provided moderate support 

for pathogenicity, with scores exceeding commonly 
accepted pathogenicity thresholds. CADD, with a high 
score of 29.5, further supports the potential deleterious 
nature of this variant, as values above 20 are indicative 
of functional impact. SIFT and LRT classified the variant 
as deleterious, providing additional supporting evidence. 
Figure 223 shows Asn 216 within the protein structure. The 
substitution of asparagine with isoleucine at position 216 
likely disrupts crucial hydrogen bonds within the protein, 
as asparagine possesses an amide group capable of forming 
hydrogen bonds, while isoleucine is hydrophobic and 
lacks this ability. The in-silico predictions for the c.640-
9T > A variant suggest a high likelihood of pathogenicity. 
dbscSNV/SpliceAI: Classified as “Deleterious” and 
“Splice altering Strong,” respectively, indicating a strong 
potential for this variant to disrupt the splicing process. 
With a score of 15.77, CADD predicts this variant to be 
“Possibly Damaging.” While not as strong as the splicing 
predictions, this score still suggests a significant potential 
impact on gene function.

Figure 1. (A) Pedigree of the family. (B) Sanger sequencing of the c.647A > T and c.640-9T > A variants in the family. Wild type (wt) and mutated sequences; 
Arrow shows the mutated position
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Literature Review
Other reports of PMM2-CDG in Iran
According to a study by Piedade et al, no type of CDG 
is common in multiple countries with high rates of 
consanguinity, including Iran.24 In Iran, a Middle 
Eastern country with a parental consanguinity rate of 
approximately 40%,25 only three families with PMM2-
CDG have been reported, including a previously reported 
family in 201126 by our group, a family reported by 
Madani et al in 2021 and the present study. In 2011, a 
missense mutation, p.Y106F, in the PMM2 gene was 
identified in a consanguineous Iranian family from the 
Lorestan Province with three affected children presenting 
with mild intellectual disability, a thin upper lip, a flat 
nasal bridge, and strabismus. Madani et al identified the 
p.G117C variant in a patient born to consanguineous 
parents, who presented with severe hypotonia, motor 
developmental delay, and elevated urinary 2-ketoglutaric 
acid levels.27

Mutational Spectrum among PMM2-CDG Patients 
According to the Human Gene Mutation Database 
(HGMD® Professional 2023.4),28 approximately 158 
disease-causing PMM2 mutations have been reported 
so far, with a predominance of synonymous variants. 
We further reviewed published studies (2017‒2024) 
reporting PMM2 mutations and associated clinical data. 
Figures 3A and 3B illustrate these variants at both the 
protein and genomic levels (illustrated by proteinpaint: 
https://proteinpaint.stjude.org/).29 

Among 91 patients, 76.9% (n = 70) exhibited compound 
heterozygosity, while 23.1% (n = 21) demonstrated 

homozygosity. Further calculations were performed 
on a per-patient basis. Each heterozygous variant was 
counted once per patient (among 70 patients, 140 alleles 
were analyzed). For four patients, only one allele with a 
specified effect on protein sequence was considered. Each 
homozygous variant was counted once per individual. 
One patient carrying a homozygous variant, g.18313A > T, 
was excluded from further analysis due to the complex 
impact of the variant on the amino acid sequence of 
the PMM2 protein.30 Altogether, 156 variants were 
considered, including 20 (12.8%) homozygous and 136 
(87.2%) compound heterozygous variants. The majority 
of variants were missense (94.9%, N = 148), while a smaller 
proportion were frameshift (5.1%, N = 8). Notably, no 
frameshift variants were observed among homozygous 
mutations. The distribution of variants across the exons 
of the PMM2 gene is shown in Figure 4, revealing that 
recurrent variants are concentrated in exons 5 and 8, 
respectively.

Clinical Categorization of 91 Patients
Clinical data were categorized based on the affected 
body systems, with the results illustrated in Table 2. 
Developmental delay was one of the most prevalent 
findings, affecting 87.9% of patients. Ocular abnormalities 
were common, with hypertelorism (93.3%) and strabismus 
(70.3%) being the most frequently observed. While a 
variety of skeletal and skin abnormalities were identified, 
their prevalence was relatively low. The most common 
skeletal and skin abnormality was short stature (16.4%), 
followed by abnormal fat pads (13.2%). Muscular system 
involvement was primarily characterized by hypotonia or 

Table 1. In-Silico Prediction of Identified Variants in the PMM2 Gene

HGVS c. FATHMM MetaLR SIFT REVEL MetaRNN MutPred PrimateAI LRT Mutationtaster
dbscSNV/
Splice AI

CADD

c.640-
9T > A

- - - - - - - - -
Deleterious/ 
splice altering 
strong

15.77

c.647A > T
Pathogenic 
moderate
(-6.29)

Pathogenic 
strong 
0.9895 

Pathogenic 
supporting
(0)

Pathogenic 
moderate 
0.927 

Pathogenic 
strong 
0.9949

Pathogenic 
strong 
0.972

VUS 
0.5389

Pathogenic 
supporting
(0)

VUS 1 - 29.5

Figure 2. Asn216 in PMM2 Protein. Substitution of asparagine with isoleucine at position 216 likely disrupts crucial hydrogen bonds within the protein structure, 
as asparagine can form hydrogen bonds while isoleucine is hydrophobic

https://proteinpaint.stjude.org/
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muscle weakness, affecting 70.3% of patients. Neurological 
manifestations were diverse, with abnormal MRI findings 
being the most common. Cardiovascular abnormalities 
were also observed, with pericardial effusion or pericarditis 
being the most frequent (22%). Hepatic involvement 
was primarily characterized by elevated transaminases 
(38.5%). Finally, clotting disorders were common among 
PMM2-CDG patients, with antithrombin III deficiency 
being the most prevalent.

Discussion
Our family harbors a previously reported missense 
mutation (p.N216I) and a novel intronic splice site 
variant (c.640-9T > A). Since 1997, multiple studies have 
reported the p.N216I allele in a compound heterozygous 
state with the p.R141H allele in Italian patients.57,58 The 
only reported homozygous genotype for this variant was 
observed in an unusual case of PMM2-CDG, presenting 
with postnatal macrosomia, distinctive bushy eyebrows 
with an abnormally shaped right eyebrow, and an absence 

Figure 3. (A) PMM2 Variants at Protein Level. (B) PMM2 variants at genomic level

Figure 4. Distribution of Variants Across the Exons of the PMM2 Gene
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Table 2. Clinical Characterization of Previous Studies Reporting PMM2-CDG Cases With PMM2 Variants7,27,30-56  

Organs/clinical signs Clinical Features Reported in 3 or More Cases Clinical Features Reported in < 3 Cases ( < 3.30%)

General  
Failure to thrive (27.5%)

 
Developmental delay (87.9%)

Head & Face

Head Microcephaly (28.6%) Macrocephaly 

Eye

Strabismus (70.3%) Abnormal eyebrows

Retinitis pigmentosa (19.8%) Abnormal eyelashes

Nystagmus (4.4%) Retinal dystrophy

Hypertelorism (93.3%) Eye light sensitivity

Abnormal eye movement (3.3%) Optic nerve atrophy

Macular hypoplasia

Decreased visual acuity

Wrinkling of the macular retinal surface

 Cortical visual impairment

Ear & Mouth Hearing problem (16.5%) Postnatal macrosomia

Nose  

Flat nasal bridge

Prominent nares

No reaction on nose

Wide nasal bridge

Skeletal system

Osteoporosis/ Osteopenia (4.4%) Kyphoscoliosis

Scoliosis (7/9%) Clubfoot

Joint laxity (4.4%) Bilateral radial aplasia

Short stature (16.5%) Pectus Carinatum

 

Pectus excavatum

Scapular dyskinesis (Mild winging of the scapulae)

Talipes equinus

Hammer toe 

Elongated slender fingers

Spinal cord disorder

Skin

Abnormal fat distribution (13.2%) Purpura

Orange peel' skin (7.7%) Petechiae

 

Pressure ulcers

pilonidal sinus,

Skin elasticity changes

Easy bruising

Eczema

Dry skin parts

Muscular system

Muscle weakness or hypotonia (70.3%) Spasticity 

Myopathy (15.4%) Torticollis

 
Tendon Reflexes and Plantar Responses

Spastic paraplegia

Nervous system

Ataxia (28.6%) Non-cerebral haemorrhage

Hyporeflexia (14.3%) Intentional tremor

Stroke-like episodes (14.3%)  

Seizure or epilepsy (27.5%)  

Stroke mimic (3.3%)  

Cerebral thrombosis (5.5%)  

Non-cerebral thrombosis (3.3%)  

Cerebral haemorrhage (4.4%)  

Abnormal MRI results (68.1%)  

Peripheral neuropathy (16.5%)  
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Table 2. Continued.

Organs/clinical signs Clinical Features Reported in 3 or More Cases Clinical Features Reported in < 3 Cases ( < 3.30%)

Urogenital system

Genital POF or risk of POF (5.5%) Defect in secondary sexual development 

Urinary system

Proteinuria (16.5%) Nephrocalcinosis

Increased renal echogenicity (15.4%) Renal cyst/ cystic renal disorder

Tubulopathy (5.5%) Oliguria

Cryptorchidism (3.3%) Hypertension due to nephrotic syndrome

Inguinal hernia (3.3%) Enlarged kidney and decreased corticomedullary diameter

Cardiovascular system Pericardial effusion/pericarditis (22%) Conotruncal cardiac malformations

Liver problems  Hepatomegaly (18.7%) Liver fibrosis

 Increased liver echogenicity (12.1%) Steatosis

 Elevated transaminases (38.5%) Liver failure

   Low haptoglobin level

Other signs

Nipple anomalies (38.5%) Headache

Ascites (11%) Steatorrhea

Edema (7.7%)  

Behaviour changes (3.3%)  

Gastrointstinal problems Feeding problems (22%) Gastroesophageal reflux diseas

 Vomiting (10%)  

 Diarrhea (10%)  

Respiratory system

Pneumonia (5.5%) Sleep apnea

 Pleural effusion (6.6%) Episodes of cyanosis

Sinusitis

Pulmonary nodular amyloidosis

Tachypnea

Dyspnea

Recurrent airway infections

Hypoxemia

Bronchopneumonia

Respiratory distress

Meconium aspiration syndrome

Endocrine system

Hypothyroidism (16.5%) Thyroid binding globulin deficiency

Hypergonadotropic hypogonadism (4.4%) Hyperprolactinemia 

Hyperinsulinaemic hypoglycaemia (12.1%) Panhypopituitarism/hypoplastic infundibulum

Adrenal insufficiency (3.3%)
Hypomagnesemia

GH deficiency

Prenatal Manifestations

Non-immune hydrops fetalis (3.3%) Low birth weight

Oligohydramnios

Intrauterine growth retardation

Biochemistry

Hypocholesterolemia (4.4%) Hypolipidaemia

Triglyceridemia (9. 9%) Hyperammonemia

Hypoalbuminemia (12.1%) Lactic acidosis

Low serum HDL (4.4%) Iron deficiency

Abnormal ferritin levels

High 2-ketoglutaric acid in urine sample

Low circulating PCSK9 levels

Hypoproteinemia

Elevation of dehydrogenase

Low microalbumin

Low serum creatinin

High serum creatinin

Elevation of creatine kinase

 Low urine beta-2 microglobulin
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of inverted nipples and fat pads. Notably, motor nerve 
conduction velocity in the tibialis posterior nerve of the 
lower limbs was normal, in contrast to other PMM2-
CDG patients.59 As depicted in Figure 2,23 asparagine’s 
side chain contains an amide group (-CONH2), capable 
of forming hydrogen bonds as both a donor and acceptor. 
In contrast, isoleucine is a hydrophobic amino acid with a 
hydrocarbon side chain, unable to participate in hydrogen 
bonding. Thus, the substitution of asparagine with 
isoleucine at position 216 likely disrupts crucial protein 
interactions and hydrogen bonding, contributing to the 
observed phenotypic features in PMM2-CDG patients 
carrying this mutation. The other identified variant, 
which is a novel variant, c.640-9T > A, is located within 
the polypyrimidine tract of the last intron of the PMM2 
gene. To the authors’ knowledge, this variant has not been 
reported before, but multiple reports of intronic variant 
NM_000303.3:c.640-9T > G exist. A previous study 
identified this variant as important for the activation of a 
cryptic intronic splice site in fibroblast cell lines.60

The PMM2-CDG is a rare disorder with only three 
reported families in Iran, of which two were identified 
by our group. The identification of recurrent variants, 
particularly p.R141H, p.V231M, p.N216I, and p.V129M, 
highlights the importance of these specific alterations in 
disease pathogenesis. The clustering of variants in exons 
5 and 8 suggests potential mutational hotspots that may 
be targeted for efficient genetic testing. The absence of 
synonymous variants within the two conserved domains 
(amino acids 46‒48 and 188‒190) of the PMM2 gene 
(Figure 3) may suggest that these regions are highly 
conserved and critical for the protein’s function. However, 
further studies are still needed to investigate this issue.

As this is a descriptive study, we conducted a 
comprehensive review of published reports on 
PMM2 variants and their associated clinical features. 
Common clinical findings included developmental 
delay, ocular problems (hypertelorism and strabismus), 
muscular system abnormalities (hypotonia or muscle 
weakness), neurological signs (abnormal MRI findings), 
cardiovascular system involvement (pericarditis or 

pericardial effusion), hepatic problems (elevated 
transaminases) and clotting disorders (antithrombin 
III deficiency). Less common findings were skeletal and 
skin abnormalities, and behavioral problems. This study 
showed that prenatal manifestations are rare among 
PMM2-CDG patients but they include non-immune 
hydrops fetalis, low birth weight, oligohydramnios and 
intrauterine growth retardation.

Conclusion
In conclusion, our study reports a novel splice variant with 
a nucleotide substitution in a family with PMM2-CDG 
and expands the knowledge on PMM2-CDG by reviewing 
91 previously reported cases. The most prevalent variants 
and recurrent mutations occurred in exons 5 and 8 of 
the PMM2 gene. A limitation of this study is that the 
categorization of papers was based solely on clinical signs 
explicitly stated by authors. This approach may have 
inadvertently excluded some clinical signs that, while 
present, were not explicitly mentioned or investigated. 
Furthermore, the inclusion criteria of studies reporting 
both genotype and phenotype data could introduce bias, as 
not all relevant studies may meet this specific requirement. 
Since the incidence of PMM2-CDG is approximately 
1 in 20 000,61 our analysis of 91 well-documented 
cases—each reporting both clinical and genetic data—
represents a substantial portion of the fully reported 
cases currently available in the literature. This allowed 
us to explore clinical sign classifications and identify 
potential genetic hotspots. However, it should be noted 
that not all reported cases could be included, particularly 
those lacking comprehensive individual-level clinical or 
genetic information. To mitigate these limitations and 
draw more robust conclusions, a comprehensive analysis 
of phenotypic and clinical data from a broader range of 
studies is necessary. For this reason, authors advocate for 
the creation of a comprehensive database containing both 
clinical and genotype data of PMM2-CDG patients.
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Organs/clinical signs Clinical Features Reported in 3 or More Cases Clinical Features Reported in < 3 Cases ( < 3.30%)

Immunology Hypogammaglobulinemia (3.3%) Leucocytosis (high wbc)

Hematology

Anemia (5.5%) Low INR

Thrombocytopenia (5.5%) Pancytopenia
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Low factor IX (4.4%)  
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